Course code	Course Name	L-T-P - Credits	Year of Introduction
ME301	MECHANICS OF MACHINERY	$\mathbf{3 - 1 - 0 - 4}$	$\mathbf{2 0 1 6}$
Prerequisite : Nil			
Course Objectives To provide knowledge on kinematics of selected mechanisms, design of cams, theory and analysis of gears, gear trains and synthesis of mechanisms.			
Syllabus Introduction to kinematics and mechanisms - different mechanisms, displacement, velocity, and acceleration analysis. Cam and followers - displacement, velocity, and acceleration analysis, cam profile synthesis. Gears - law of gearing, interference, gear trains, applications. Kinematic synthesis - dimensional synthesis, graphical synthesis, position synthesis, analytical synthesis, case study.			

Expected outcome

The students will be able to solve practical problems related to kinematics of mechanisms

Text Books:

1. Ballaney P. L., Theory of Machines and Mechanisms, Khanna Publishers, 2005
2. S. S. Rattan, Theory of Machines, Tata Mc Graw Hill,2009

References:

1. C. E. Wilson, P. Sadler, Kinematics and Dynamics of Machinery, Pearson Education, 2005
2. D. H. Myskza, Machines and Mechanisms Applied Kinematic Analysis, Pearson Education,2013
3. G. Erdman, G. N. Sandor, Mechanism Design: Analysis and synthesis Vol I \& II, Prentice Hall of India, 1984.
4. Ghosh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated East West Press, 1988
5. J. E. Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGraw Hill,2010

Course Plan							
Module	Contents	Hours	Sem. Exam Marks				
	Introduction to kinematics and mechanisms - various mechanisms, kinematic diagrams, degree of freedom- Grashof's criterion, inversions, coupler curves	3					
	straight line mechanisms exact, approximate - Ackerman Steering Mechanism - Hooke's joint - Geneva mechanism - mechanical advantage, transmission angle	4	15%				
	Displacement, velocity and acceleration analysis - relative motion - relative velocity - instant centre -Kennedy's theorem	4					
IIRelative acceleration - Coriolis acceleration - graphical and analytical methods - complex number methods - computer oriented methods.	4	15%					
	Cams - classification of cam and followers - displacement diagrams, velocity and acceleration analysis of SHM, uniform velocity, uniform acceleration, cycloidal motion						
	FIRST INTERNAL EXAMINATION					2	15%

	Analysis of tangent cam with roller follower and circular cam with flat follower	6	
	Introduction to polynomial cams.	2	
IV	Gears - terminology of spur gears - law of Gearing - involute spur gears involutometry - contact ratio - interference - backlash gear standardization - interchangability	4	15\%
	Non-standard gears, centre distance modification, long and short addendum system. - internal gears - theory and details of bevel, helical and worm gearing	4	
- SECOND INTERNAL EXAMINATION			
V	Gear trains - simple and compound gear trains - planetary gear trains - differential -solution of planetary gear train problems applications	5	20\%
	Kinematic synthesis (planar mechanisms) - tasks of kinematic synthesis - type, number and dimensional synthesis - precision points	4	
VI	Graphical synthesis for motion - path and prescribed timing function generator	3	20\%
	2 position and 3 position synthesis - overlay Method	3	
	Analytical synthesis techniques, Freudenstein's equation complex number methods - one case study in synthesis of mechanism.	4	
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3X10 marks $=30$ marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3 X 10 marks $=30$ marks)

Part C

There should be 3 questions each from module V and VI
Each question carries 10 marks
Students will have to answer any four questions out of 6 (4X10 marks $=40$ marks)
Note: in all parts each question can have a maximum of four sub questions

