Course cod	e Course Name	L-T-P - Credits	Yea	r of Introduction			
ME214	Theory of Machines	4-0-0-4		2016			
Prerequisit	e : Nil		•				
Course Objectives							
• To impart basic knowledge on kinematics of mechanisms and machines.							
• To understand kinematic synthesis of mechanisms.							
• To analyse the motion resulting from a specified set of linkages in a mechanism.							
• To study the principles involved in assessing the displacement, velocity and acceleration at							
any po	any point in a link of a mechanism.						
• To stuc	• To study the application of friction in different devices.						
• To study the power transmission devices							
Syllabus							
Kinematics	s – velocity and acceleration- Friction	– Brakes – Gear	r – Car	ns- Gyroscope -			
Flywheel Governors- Static and dynamic balancing - Vibration							
Expected o	utcome.						
• Aft	er the course, students will understand th	e various aspects of	f mechar	nisms and			
ma	chines and will be able to solve de <mark>si</mark> gn pr	oblems in the area	of mecha	anisms and			
ma	chines.						
Tart Daal							
1 DI	S Ballaney, Theory of Machines and Mech	onisms Khanna D	ublicher				
	Rattan-Theory of machines McGraw H	ill	1011511018				
2. 55	. Ruturi Theory of machines, we offaw fi						
Reference	s:						
1. J.E.	1. J. E. Shigley and J.J Uicker, Theory of Machines and Mechanisms, McGraw–Hill.						
2. T.B	evan T., Theory of Machines- A Text Bo	ok for Engineering	Students	s, Pearson.			
3. Wilson C. E. and J. P. Sadler, Kinematics and Dynamics of Machinery, Pearson.							
4. Ambekar A. G., Mechanism and Machine Theory, PHI Learning.							
5. Gosh A. and A. K. Mallick, Theory of Machines and Mechanisms, Affiliated East West							
Press. 6 V.P. Singh Theory of machines Dhannat Rai							
0. 1.1.	bingh, Theory of Indennies, Dhanpat Ra						
	Course	Plan	/				
Module	Contents		Hours	Sem.ExamMarks			
ŀ	Kinematics - links, mechanism, Degre	es of freedom,		15%			
0	Grashoff's law, four-bar chain, Slider	crank chain,					
i	nversions and practical application	s. Automobile					
S	teering mechanisms: Davis and Acke	rmann steering					
I I I	nechanisms.		10				
	Velocity and acceleration diagram	s of simple					
	Existion Pressure and wear theories	neory only).					
	friction Single and multiple disc clutche						
	menon, single and multiple disc clutche	···					

II	Brakes - block and band brakes, self energizing and self- locking in braking. Gear – Different types of gears- Nomenclature of spur and helical gears, Law of gearing, Gear trains - Simple, compound gear trains and epicyclic gear trains.	9	15%		
FIRST INTERNAL EXAMINATION					
III	Cams - types of cams, cam profiles for knife edged and roller followers with and without offsets for SHM, constant acceleration-deceleration, constant velocity and cycloidal motion.	4 <u></u> 8	15%		
IV	Gyroscope –Gyroscopic torque, gyroscopic stabilization of ships and aeroplanes. Flywheel - Turning moment diagrams, fluctuation of energy.	8	15%		
SECOND INTERNAL EXAMINATION					
V	Governors - types of governors, simple watt governor - Porter, Proell governors Isochronisms, hunting, sensitivity and stability. Hartnell governor. Static and dynamic balancing of rotating mass- Single and several masses in different planes, balancing of reciprocating mass, Dynamic analysis of slider crank mechanism.	10	20%		
VI	Vibration - kinematics of vibrating motion, vibration systems having single degree of freedom, free and force vibration, damped vibration. Torsional vibrations -Transverse vibration. whirling of shaft (Description only).	9	20%		
END SEMESTER EXAM					

Question Paper Pattern

Maximum marks: 100,

Exam duration: 3 hrs

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part B**

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to ensure one three questions out of 4 (2X10 morks 20 morks)

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.