ME213	THEORY OF MACHINES	3-0-0-3		2016		
Prerequisite : Nil						
Course O	Course Objectives					
• To understand the layout of linkages in the assembly of a system/machine.						
• To study the principles involved in assessing the displacement, velocity and acceleration at						
an	any point in a link of a mechanism.					
• To	• To analyse the motion resulting from a specified set of linkages in a mechanism.					
To study the application of friction in different devices.						
• To study the power transmission devices.						
• To	• To study the use of gyroscopic couples.					
• To	• To understand the principles in mechanisms used for governing of machines.					
LINIIVED SITV						
Syllabus						
Kinematics – velocity and acceleration- Friction – Brakes – Gear – Cams- Gyroscope - Flywheel						
Governors- Static and dynamic balancing - Vibration						
Expected	Expected outcome.					
• After this programme, students are expected to have a thorough understanding of different						
	chanisms and theories which will hel		-			
	ipments and also to solve practical proble	ms in the area of ma	chines a	nd mechanisms.		
	Text Book:					
1. P L Ballaney, Theory of Machines and Mechanisms, Khanna Publishers						
2. 55	2. S S. Rattan-Theory of machines, McGraw Hill					
Reference	References:					
1. Bevan, Theory of Machines, Pearson Education, 1986						
2. Ra	2. Rao J S and Dukkipati R V, Mechanism and Machine Theory, Wiley EasternLtd.					
3. Malhotra, D.R and Gupta, H C, Theory of Machines, Satya Prakasam Tech. India						
Publications Ltd.						
4. Gosh A and Mallick A K, Theory of Machines and Mechanisms, Affiliated East West						
Press. Esto						
5. Shigley J E. and Uicker J J, Theory of Machines and Mechanisms, McGraw–Hill.						
Course Plan						
Module	Contents	H	ours	Sem.ExamMarks		
	Kinematics - links, mechanism, Degree					
	Grashoff's law, four-bar chain, Slider crank chain,					
	inversions and practical applications.	-				
I acceleration diagrams of simple mechanisms. 7				15%		
	Coriolis acceleration (Theory only).					
	Friction - Pressure and wear theories, pive					
	friction, Single and multiple disc clutches	·				

Brakes - block and band brakes, self energizing and

Gear – Different types of gears- Nomenclature of spur

Simple, compound gear trains and epicyclic gear

7

Gear trains -

15%

self-locking in braking.

and helical gears, Law of gearing,

Π

Course code

Course Name

L-T-P-Credits

Year of Introduction

	trains.			
	FIRST INTERNAL EXAMINATION			
ш	Cams - types of cams, cam profiles for knife edged and roller followers with and without offsets for SHM, constant acceleration-deceleration, constant velocity 7 and cycloidal motion	15%		
IV	Gyroscope –Gyroscopic torque, gyroscopic stabilization of ships and aeroplanes.7Flywheel - Turning moment diagrams, fluctuation of energy.7	15%		
SECOND INTERNAL EXAMINATION				
V	Governors - types of governors, simple watt governor - Porter, Proell governors Isochronisms, hunting, sensitivity and stability. Hartnell governor(Theory only). Static and dynamic balancing of rotating mass- Single and several masses in different planes, balancing of reciprocating mass, Dynamic analysis of slider crank mechanism(Theory only).	20%		
VI	Vibration - kinematics of vibrating motion, vibrationsystems having single degree of freedom, free and forcevibration, damped vibration.Torsional vibrations -Transverse vibration. whirling ofshaft (Theory only).	20%		
END SEMESTER EXAM				

Question Paper Pattern ESIQ.

Maximum marks: 100

Time: 3 hours

The question paper should consist of three parts

Part A

2014 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.