Course code	Course Name	L-T-P - Credits	Year of Introduction
ME212	FLUID MECHANICS	3-1-0-4	2016

Prerequisite : Nil Course Objectives

- To establish fundamental knowledge of basic fluid mechanics and address specific topics relevant to simple applications involving fluids
- To familiarize students with the relevance of fluid dynamics to many engineering systems

Syllabus

Fluid Properties, Kinematics of fluid flow, Fluid Statics, Dynamics of fluid flow, Flow through pipes, Concept of Boundary Layer, Dimensional Analysis and Hydraulic similitude

Expected outcome

At the end of the course students will

- i. Become conversant with the concepts of flow measurements and flow through pipes
- ii. Be able to apply the momentum and energy equations to fluid flow problems.
- iii. Be able to evaluate head loss in pipes and conduits.
- iv. Be able to use dimensional analysis to design physical or numerical experiments and to apply dynamic similarity

Text Books:

- 1. Balachandran.P, Engineering Fluid Mechanics, PHI,2012
- 2. A S Saleem, Fluid Mechanics, Fathima Books, 2016

References:

- 1. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2005
- 2. Cengel, Fluid Mechanics, McGraw Hill Education India 2014
- 3. Fox R. W. and A. T. McDonald, Introduction to Fluid dynamics, 5/e, John Wiley and Sons, 2009.
- 4. Joseph Karz, Introductory Fluid Mechanics, Cambridge University press,2010
- 5. Modi P. N. and S. M. Seth, Hydraulics & Fluid Mechanics, S.B.H Publishers, New Delhi, 2002 . Streeter V. L., E. B. Wylie and K. W. Bedford, Fluid Mechanics, Tata McGraw Hill, Delhi, 2010.
- 6. Shames I. H, Mechanics of Fluids, McGraw Hill, 1992.
- 7. White F.M., Fluid Mechanics, 6/e, Tata McGraw Hill, 2008

Course Plan

Module	Contents	Hours	Sem. Exam Marks
I	Introduction: Fluids and continuum, Physical properties of fluids,	8	
	density, specific weight, vapour pressure, Newton's law of viscosity.		
	Ideal and real fluids, Newtonian and non-Newtonian fluids. Fluid		
	Statics- Pressure-density-height relationship, manometers, pressure on		
	plane and curved surfaces, center of pressure, buoyancy, stability of		
	immersed and floating bodies, fluid masses subjected to uniform		
	accelerations, measurement of pressure		15%
II	Kinematics of fluid flow: Eulerian and Lagrangian approaches,	8	
	classification of fluid flow, 1-D, 2-D and 3-D flow, steady, unsteady,		
	uniform, non-uniform, laminar, turbulent, rotational, irrotational		15%

	flows, stream lines, path lines, streak lines, stream tubes, velocity and					
	acceleration in fluid, circulation and vorticity, stream function and					
	potential function, Laplace equation, equipotential lines flow nets,					
	uses and limitations					
	FIRST INTERNAL EXAMINATION		1			
	Dynamics of Fluid flow: Fluid Dynamics: Energies in flowing fluid,	9	15%			
	head, pressure, dynamic, static and total head, Control volume analysis		1570			
	of mass, momentum and energy, Equations of fluid dynamics:					
111	Differential equations of mass, energy and momentum (Euler's					
III	equation), Navier-Stokes equations (without proof) in rectangular and					
	cylindrical co-ordinates, Bernoulli's equation and its applications:					
	Venturi and Orifice meters, Notches and Weirs (description only for					
	notches and weirs). Hydraulic coefficients,	1.0	4			
•	Pipe Flow: Viscous flow: Reynolds experiment, significance of	10	15%			
	Reynolds number, critical Reynolds number, shear stress and velocity					
	distribution in a pipe, law of fluid friction, head loss due to friction,					
	Hagen Poiseuille equation. Turbulent flow: Darcy- Weisbach					
IV	equation, Chezy's equation Moody's chart, Major and minor energy losses, hydraulic gradient and total energy line, flow through long					
	pipes, pipes in series, pipes in parallel, equivalent pipe, siphon,					
	transmission of power through pipes, efficiency of transmission,					
	Water hammer, Cavitation.					
	SECOND INTERNAL EXAMINATION					
	Concept of Boundary Layer : Growth of boundary layer over a flat	10	20%			
	plate and definition of boundary layer thickness, displacement	10	2070			
T 7	thickness, momentum thickness and energy thickness, laminar and					
V	turbulent boundary layers, laminar sub layer, velocity profile, Von-					
	Karman momentum integral equations for the boundary layers,					
	calculation of drag, separation of boundary and methods of control.					
	Dimensional Analysis and Hydraulic similitude: Dimensional analysis,	10	20%			
	Buckingham's theorem, important dimensional numbers and their					
VI	significance, geometric, Kinematic and dynamic similarity, model					
	studies. Froude, Reynold, Weber, Cauchy and Mach laws- Applications					
	and limitations of model testing, simple problems only					
	END SEMESTER EXAM					

Question Paper Pattern

Maximum marks: 100, Exam duration: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.