COUR	RSE	COURSE NAME L-T-P-C	YEAH	R OF				
EC2	07	LOGIC CIRCUIT DESIGN 3-0-0-3	<u>201</u>	16				
Prerequisite:Nil								
Course objectives:								
• To work with a positional number systems and numeric representations								
• To introduce basic postulates of Boolean algebra and show the correlation between Boolean								
ez	expression							
• To outline the formal procedures for the analysis and design of combinational circuits and sequential circuits								
• T	o study	the fundamentals of HDL						
• T	 To design and implement combinational circuits using basic programmable blocks 							
• T	o desig	n and implement synchronous sequential circuits						
Syllabus:								
Positional Number Systems, Boolean algebra, Combinational Logic, HDL concepts ,Digital ICs, Programmable Logic Devices, Sequential Logic, Sequential Circuits								
Expected	d outco	me:						
The stude	ent shou	ild able to:						
1. Compa	are vari	ous positional number systems and binary codes						
2. Apply	Boolea	n algebra in logic circuit design						
3. Design	n combi	national and sequential circuits						
4. Design	n and in	plement digital systems using basic programmable blocks						
5. Formu	late var	ious digital systems using HDL						
Text Books:								
1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2003								
2. Jo	ohn F W	Vakerly, Digital Design Principles and Practices, Pearson Prentice	Hall, 2007					
Refe	rences:							
I.Ronal		ci, Digital Systems, Pearson Education, 11 th edition, 2010						
2. I nomas L Floyd, Digital Fundamentals, Pearson Education, 8 th edition 2009 3 Moris Mano, Digital Design, Prontice Hell of India, 2 rd edition, 2002								
4 John M Yarbrough, Digital Logic Applications and Design, Cenage learning 2009								
5.David	Money	Harris, Sarah L Harris, Digital Design and Computer Architectury	e, Morgan					
Kaufn	nann – Ì	Elsevier, 2009	, C					
		Course Plan						
Modul		Course content (42 hrs)	Hours	Sem.				
e		2014		Exam Marks				
Ι	Number systems- decimal, binary, octal, hexa decimal, base conversion			15				
	1's and 2's complement, signed number representation							
	Binary	y arithmetic, binary subtraction using 2's complement						
	Binary codes (grey, BCD and Excess-3), Error detection and correcting2							
	codes : Parity(odd, even), Hamming code (7,4), Alphanumeric codes :							
п	Logic	expressions Boolean laws Duality De Morgan's law Logic	2	15				
	function	ons and gates	2	10				
	Canor	ical forms: SOP, POS, Realisation of logic expressions using K-	2					

	map (2,3,4 variables)				
	Design of combinational circuits – adder, subtractor, 4 bit	4			
	adder/subtractor, BCD adder, MUX, DEMUX, Decoder, BCD to 7				
	segment decoder, Encoder, Priority encoder, Comparator (2/3 bits)				
III	Introduction to HDL : Logic descriptions using HDL, basics of modeling (only for assignments)	2	0		
	Logic families and its characteristics: Logic levels, propagation delay, fan in, fan out, noise immunity, power dissipation, TTL subfamilies	Λ^1	15		
	NAND in TTL (totem pole, open collector and tri-state), CMOS:NAND, NOR, and NOT in CMOS, Comparison of logic families (TTL,ECL,CMOS) in terms of fan-in, fan-out, supply voltage, propagation delay, logic voltage and current levels, power dissipation and noise margin	2			
l	Programmable Logic devices - ROM, PLA, PAL, implementation of simple circuits using PLA	2			
IV	Sequential circuits - latch, flip flop (SR, JK, T, D), master slave JK FF,	3	15		
	conversion of FFs, excitation table and characteristic equations				
	Asynchronous and synchronous counter design, mod N counters,	5			
	random sequence generator				
SECOND INTERNAL EXAM					
V	Shift Registers - SIPO, SISO, PISO, PIPO, Shift registers with parallel LOAD/SHIFT	3	20		
	Mealy and Moore models, state machine ,notations, state diagram, state table, transition table, excitation table, state equations	3			
VI	Construction of state diagram – up down counter, sequence detector		20		
	Synchronous sequential circuit design - State equivalence	2	-		
	State reduction – equivalence classes, implication chart	2			
	END SEMESTER EXAM				
Assignments:					

Assignments:

- 1. Simple combinational circuit design using MUX, DEMUX, PLA & PAL
- 2. HDL simulation of circuits like simple ALU, up-down counter, linear feedback shift register, sequence generator

2014

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 50 % for theory, derivation, proof and 50% for logical/numerical problems.