COURS CODE	E COURSE NAME	L-T-P-C		TEAR O			
EC203	SOLID STATE DEVICES	3-1-0-4		2016			
Prerequisi	te: Nil		•				
Course ob	jectives:						
• To prov	ovide an insight into the basic semiconductor concepts						
• To pro	rovide a sound understanding of current semiconductor devices and technology to						
appreci	ate its applications to electronics circuits	and systems	TA	N.A			
Syllabus:	Elemental and compound semiconductor	s, Fermi-Dirac di	stribution,	Equilibr	ium and		
	te conditions: Equilibrium concentrat						
	e of carrier concentration, Carrier trans						
	, Excess carriers in semiconductors , PN		-				
	nd charge density at the junction, energy						
	e equation, electron and hole componen linear model of a diode, effect of						
	es, electrical breakdown in pn juncti						
-	ipolar junction transistor, metal insulator						
Expected of	× •						
-	ts should have a good knowledge in sem	iconductor theory	and electr	onic dev	ices.		
Text Bool		<u> </u>					
1. Ben G.	Streetman and Sanjay Kumar Banerjee,	Solid State Electro	onic Devic	es, Pears	son, 6/e,		
2010					, ,		
2. Achuth	an, K N Bhat, Fundamentals of Semicon	ductor Devices, 1	e, Mc <mark>G</mark> rav	v Hill,2 <mark>0</mark>	15		
Reference							
	M.S., Introduction to Semiconductor Mat		-	ndia, 5/e,	2008		
2. Sze S.N	A., Physics of Semiconductor Devices, Jo	ohn Wiley, 3/e, 20	05				
3. Neame	n, Semiconductor Physics and Devices, I	AcGraw Hill, 4/e,	2012				
4. Pierret,	Semiconductor Devices Fundamentals,	Pearson, 2006					
5. Rita Jo	hn, Solid State Devices, McGraw-Hill, 2	014					
6. Bhattac	charya .Shar <mark>ma, Solid State Electr</mark> onic D	evices, Oxford Un	iversity Pr	ress, 2012	2		
7. Dasgup	ota and Dasgu <mark>pta , Semiconduct</mark> or Device	es : Modelling and	Technolo	gy (PHI))		
	Course Plan						
Module	Course content (48	Shrs)		Hours	Sem.		
					Exam		
	Elemental and service and service	Dia d		4	Marks		
	Elemental and compound semic distribution, Equilibrium and steady star	,	ni-Dirac	4	15		
	carrier concentration	entration of electrons and holes, Temperature dependence of er concentration					
	Carrier transport in semiconductors,	drift, conductiv	ity and	5			
	mobility, variation of mobility with temp						
	High Field Effects, Hall effect	1	_ 1				
	Excess carriers in semiconductors: Gene			9	15		
	mechanisms of excess carriers, quasi						
	Einstein relations, Continuity equat	ions, Diffusion	length,				

Gradient of quasi Fermi level

FIRST INTERNAL EXAM

III	PN junctions : Contact potential, Electrical Field, Potential and Charge density at the junction, Energy band diagram, Minority carrier distribution, Ideal diode equation, Electron and hole component of current in forward biased p-n junction, piecewise linear model of a diode effect of temperature on V-I characteristics	9	15		
IV	Diode capacitances, switching transients, Electrical Breakdown in PN junctions, Zener and avalanche break down (abrupt PN junctions only), Tunnel Diode basics only, Metal Semiconductor contacts, Ohmic and Rectifying Contacts, current voltage characteristics	9 M	15		
	SECOND INTERNAL EXAM	λT			
V	Bipolar junction transistor, current components, Minority carrier distributions, basic parameters, Evaluation of terminal currents (based on physical dimensions), Transistor action, Base width modulation	9	20		
VI	Metal Insulator semiconductor devices: The ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion, surface potential, CV characteristics, effects of real surfaces, work function difference, interface charge, threshold voltage MOSFET: Output characteristics, transfer characteristics, sub threshold characteristics, MOSFET scaling (basic concepts)	9	20		
	FinFET-structure and operation	1			
END SEMESTER EXAM					

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 70 % for theory, derivation, proof and 30% for logical/numerical problems.

2014