COURSE	CODE	COURSE NAME	L-T-P-C	INT	YEAR O)F TION		
EC2	01	NETWORK THEORY	3-1-0-4		2016			
Prerequisite: Nil								
Course ob	jectives:							
 To make the students capable of analyzing any linear time invariant electrical network. To study time domain, phasor and Laplace transform methods of linear circuit analysis. To study the transient response of networks subject to test signals. To develop understanding of the concept of resonance, coupled circuits and two port networks. 								
Syllabus:								
Circuit variables and Circuit elements, Kirchhoff's laws, Network topology, Mesh and node analysis of network, Laplace transform, Inverse Laplace transform, Solution of differential equations by using Laplace transforms, Transient analysis of RL, RC, and RLC networks, Network functions for the single port and two ports, Parameters of two-port network, Resonance, Coupled circuits Expected outcome: At the end of the course students will be able to analyze the linear time invariant electrical circuits.								
Text Book	S							
1. Ravish 2. Valken	R., Netw burg V.,	ork Analysis and Synthesis, 2/e, McG Network Analysis, 3/e, PHI, 2011.	raw-Hill, 2015.					
Reference	s:							
 Sudhakar A,S. P. Shyammohan, Circuits and Networks- Analysis and Synthesis, 5/e, McGraw- Hill, 2015. Choudhary R., Networks and Systems, 2/e, New Age International, 2013. Franklin F. Kuo, Network Analysis and Synthesis, 2/e, Wiley India, 2012. Pandey S. K., Fundamentals of Network Analysis and Synthesis, 1/e, S. Chand, 2012. Edminister, Electric Circuits – Schaum's Outline Series, McGraw-Hill, 2009. 								
		Course Plan						
Module		Course content (48 hrs)	/	Hours	Sem. Exam Marks		
Ι	Introduc Kirchho transfor	ction to circuit variables and circuit off's Laws, Independent and depen- mations	elements, Revi dent Sources, S	ew of Source	3	15		
	Network topology, Network graphs, Trees, Incidence matrix, Tie-set matrix and Cut-set matrix				2			
	Solution analysis	n methods applied to dc and phasor ci of network containing independent an	rcuits: Mesh and d dependent sou	d node arces	3			
11	Networl theorem theorem	k theorems applied to dc and phaso , Norton's theorem, Superposition , Millman's theorem, Maximum powe	r circuits: They theorem, Recip er transfer theore	venin's procity em	6	15		

	Laplace transform, properties	4			
	Laplace Transforms and inverse Laplace transform of common				
	functions, Important theorems: Time shifting theorem, Frequency				
	shifting theorem, Time differentiation theorem, Time integration				
	theorem, s domain differentiation theorem, s domain integration				
	theorem, Initial value theorem, Final value theorem				
FIRST INTERNAL EXAM					
III	Partial Fraction expansions for inverse Laplace transforms, 3				
	Solution of differential equations using Laplace transforms	A	15		
	Transformation of basic signals and circuits into s-domain	2			
	Transient analysis of RL, RC, and RLC networks with impulse, step, 3 pulse, exponential and sinusoidal inputs				
	Analysis of networks with transformed impedance and dependent sources.	3			
IV	Network functions for the single port and two ports, properties of driving point and transfer functions, Poles and Zeros of network functions, Significance of Poles and Zeros	3	15		
	Time domain response from pole zero plot, Impulse Response 1				
	Network functions in the sinusoidal steady state, Magnitude and Phase response	3			
SECOND INTERNAL EXAM					
V	Parameters of two port network: impedance, admittance, transmission and hybrid parameters, Interrelationship among parameter sets	5	20		
	Series and parallel connections of two port networks	2			
	Reciprocal and Symmetrical two port network	2			
	Characteristic impedance, Image impedance and propagation	2			
	constant (derivation not required)	1			
VI	Resonance: Series resonance, bandwidth, Q factor and Selectivity, Parallel resonance	3	20		
	Coupled circuits: single tuned and double tuned circuits, dot convention, coefficient of coupling, Analysis of coupled circuits	4			
	END SEMESTER EXAM				

2014

Question Paper Pattern

The question paper consists of three parts. Part A covers modules I and II, Part B covers modules III and IV and Part C covers modules V and VI. Each part has three questions. Each question can have a maximum of four subparts. Among the three questions one will be a compulsory question covering both the modules and the remaining two questions will be as one question from each module, of which one is to be answered. Mark pattern is according to the syllabus with maximum 30% for theory and 70% for logical/numerical problems, derivation and proof.