Course code	Course Name	L-T-P - Credits	Year of		
			Introduction		
EC212	Linear Integrated Circuits and	4-0-0 -4	2016		
	Digital Electronics				
Prerequisites :Nil					

Course Objectives

- To introduce the concepts for realizing functional building blocks in ICs and applications of IC.
- To know the fundamentals of combinational and sequential digital circuits.

Syllabus

Ideal OP-AMP characteristics, DC characteristics- AC characteristics- offset voltage and current: voltage series feedback - shunt feedback amplifiers, differential amplifier- frequency response of OP-AMP- Basic applications of OP-AMP - summer, differentiator ,integrator, V/I &I/V converter-Instrumentation amplifier-Basic Comparatorsregenerative comparatorsmultivibrators- waveform Generators- clippers- clampers- peak detector- S/H circuit- First and Second order active filter-, D/A converter (R-2R ladder and weighted resistor types)- A/D converter - Dual slope- successive approximation and flash types- 555 Timer circuit - Functional block- characteristics & applications:- IC 566-voltage controlled oscillator circuit- OP-AMP-Voltage regulator-Series- Shunt and Switching regulator- Review of number system:- types and conversion- codes- Boolean algebra: De-Morgan's theorem- Minimization of Boolean function using K-maps & Quine McCluskey method- Combinational circuits: -Adder- subtractors- code converters- encoders- decoders- multiplexers and demultiplexers- Combinational Logic by using Multiplexers- ROM- PLA and PAL-Memories - ROM, Static and Dynamic RAM- Read/Write Memory- EPROM, EEPROM-Flip flops - SR- D- JK - T and Master Slave FF- Shift registers-Counters-Asynchronous and Synchronous Counters- Up-Down Counter- Modulo Counter- Ring Counter-Analysis of Asynchronous Counters

Expected outcome:

• The students will learn to know about the IC'S and their application, digital circuits, combinational and sequential circuits.

Text Book:

1. Ramakant A.Gayakward, Op-amps and Linear Integrated Circuits, IV edition, Pearson Education, 2003 / PHI.

- 2. D.Roy Choudhary, Sheil B.Jani, Linear Integrated Circuits, II edition, New Age, 2003.
- 3. M. Morris Mano, Digital Logic and Computer Design, Prentice Hall of India, 2002

References:

1. Robert F.Coughlin, Fredrick F.Driscoll, Op-amp and Linear ICs, Pearson Education, 4th edition, 2002 /PHI.

- 2. David A.Bell, Op-amp & Linear ICs, Prentice Hall of India, 2nd edition, 1997.
- 3. Charles H.Roth, Fundamentals Logic Design, Jaico Publishing, IV edition, 2002.
- 4. Floyd, Digital Fundamentals, 8th edition, Pearson Education, 2003.

Course Plan				
Module	Contents		Sem. Exam Marks	
I	OP-AMP-Ideal OP-AMP characteristic-offset voltage and current: voltage series feedback and shunt feedback amplifiers, differential amplifier- frequency response of OP-AMP- Basic applications of op-amp – differentiator and integrator, V/I &I/V converter.		15%	
II	Instrumentation amplifier- Basic Comparators- regenerative comparators- multivibrators- waveform generators- clippers, clampers- peak detector- S/H circuit- isolation amplifier - log and antilog amplifiers analog multipliers		15%	
FIRST INTERNAL EXAMINATION				
ш	D/A converter (R-2R ladder and weighted resistor types)- A/D converter - Dual slope, successive approximation and flash types Active filters-filter transfer function-Butterworth and Chebyshev filters-First order and second order function for low-pass, high-pass, band –pass, band-stop and all –pass filters	9	15%	
IV	Review of number system- types and conversion- codes- one's complement and two's complement-Arithmetic operations of Binary Boolean algebra: De-Morgan's theorem- Minimization of Boolean function using K-maps &QuineMcCluskey method.	9	15%	
SECOND INTERNAL EXAMINATION				
V	Combinational circuits: Adder- subtractor- code converters, encoders, decoders, multiplexers and demultiplexers. Implementation of Combinational Logic by using Multiplexers, ROM, PLA and PAL. Memories – ROM- Static and Dynamic RAM- Read/Write Memory- EPROM- EEPROM	10	20%	
VI	Flip flops - SR, D, JK, T and Master Slave Flip Flop -Shift registers -Counters-Asynchronous and Synchronous Counters- Up-Down Counter- Modulo Counter- Ring Counter-Analysis of Asynchronous Counters-sequence detector.	10	20%	

QUESTION PAPER PATTERN

Maximum Marks : 100 PART A: FIVE MARK QUESTIONS Exam Duration:3 hours

8 compulsory questions –1 question each from first four modules and 2 questions each from last two modules (8 x 5= 40 marks)

PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions ($3 \times 10 = 30$ marks) **PART C**: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x 15 = 30 marks)