Course co	ode Course Name	L-T-P - Credits	Year of Introduction				
EE488	B INDUSTRIAL AUTOMATION	3-0-0-3	2016				
Prerequisite: Nil							
Course Objectives							
To explain the General function of Industrial Automation							
To identify Practical Programmable Logic Controller Applications							
To know Industrial Sensors and Robotics							
Syllabus							
Types of motion actuators, electrical and mechanical sensors, ladder diagrams, cascade method,							
Huffman method, Programmable Logic Controllers, Microcomputers: interfacing and							
programming, Principles of Robotics and applications							
Expected	l outcome .	ITV					
The students will							
i. Know about motion devices in automation							
11. iii	11. Know about various sensors in automation						
iv	iii. Be able to understand assembly language programs						
IV. V	Know about Robotic components	grams					
Text Boo	ok:						
• P	essen. Industrial Automation : Circuit Design	and Components. Wiley					
Reference	ces:						
1. Ba	rtelt, Industrial Automated Systems, Instrumen	tation and Motion Cont	rol, Ceng	age			
2. Mukhopadyay et al. Industrial Instrumentation, Control and Automation, Jaico Publishing							
House							
	Course Pla	ın					
				Sem.			
Module	Contents		Hours	Exam Marks			
Ι	Motion Actuators: Types of Motion and Electric Linear Actuators, Electric Rotary Ac	Motion Conversion, ctuators, Fluid-Power	6	15%			
	Linear Actuators, Fluid-Power Rotating Actua	ators					
	Sensors : Binary vs. analog sensors, Elect	ric Position sensors:					
	Limit switches, photovoltaic sensors, ultrasor	nic sensors, inductive	(150/				
	and capacitive and magnetic proximity	sensors, Pneumatic					
11	position sensors: limit valves, back-pressure	sensors, coiled spring	6	15%			
	sensors. Level, pressure, temperature and flow	v switches					
FIRST INTERNAL EXAMINATION							
	Electric Ladder Diagrams: Ladder diagram	ms, sequence charts,					
III	Ladder diagram design using sequence cha	rts, cascade method,:		15%			
	single and multi path sequencing system	ns with and without	7				
	sustained outputs, Huffman method: sequent	ial systems, stable and	,				
	unstable states, state assignment.						
IV	Programmable Controllers: PLC construction PLC, constructing ladder diagrams for PLCs,	on, Programming the	7	15%			

SECOND INTERNAL EXAMINATION					
V	Microcomputers : Microcomputers for control applications, architecture, computer interfacing, programmable interface adaptors, Ramping a step motor example.	8	20%		
VI	Robotics and Numerical Control : Basic Robot Definitions, Basic manipulator configurations, Numerical Control Systems, Robot Kinematics, Robot Grippers, Robot Sensors, Robot Programming, General Considerations for Robot Applications	8	20%		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.