Course coo	de Course Name	L-T-P -		Year of
		Credits	Int	roduction
EE301	POWER GENERATION, TRANSMISSION AND PROTECTION	3-1-0-4		2016
Prerequisit			L	
Course Ob				
Course Ob	• To set a foundation on the fundamental concepts of Pow	ver System	Gene	ration
	-	er bystem	Gene	ration,
<u>a n 1</u>	Transmission, Distribution and Protection.	AAA		
Syllabus	ALL ADUUL NALA	AIVI		
	ration-conventional-hydrothermal, nuclear - non conventional a ation-Power factor Improvement-Power transmission -line parar			
	ance- Transmission line modelling- classifications -short lin			
·	line as two port network-parameters- derivation -power flow t			÷
	ductors-volume of conductors- Kelvin's law- Types of Towers-c			
• •	ypes -corona-underground cables-H V DC transmission-Flexi		•	
	system-need for protection-circuit breakers-protective relay type			
	ges -insulation coordination	•••		
Expected	outcome .			
The student	s will be able to			
i . 1	Know the basic aspects in the area of power generation, tra	insmission	ı, distr	ibution and
]	protection.			
ii. 1	Design power factor correction equipment, transmission line par	ameters, a	nd dec	ide upon the
	various protection schemes to be adopted in various cases.			
Text Bool				
	R. Gupta: "Power system Analysis and Design", Wheeler publishe	ers		
	B. Gupta, "A course in Electrical Power", Kataria and sons, 2004.			
	adhwa, "Electrical Power system", Wiley Eastern Ltd. 2005			
Reference				
	hakrabarti, ML.Soni, P.V.Gupta, V.S.Bhatnagar, "A tex	t book o	f Pov	ver system
•	ineering" Dhanpat Rai, 2000	*****		
	iner J.J, Stevenson W.D, "Power system Analysis", McGraw			
	Nagarath & D.P. Kothari, "Power System Engineering", TM			
	Padiyar," FACTS Controllers for Transmission and	Distribu	tion	New Age
	rnational, New Delhi			
	venson Jr. Elements of Power System Analysis, TMH			
6. Sun	il S Rao ,"Switch gear and Protection",Khanna Publishers Course Plan			
				Sem. Exam
Module	Contents	Ho	ours	Marks
	Introduction: Typical layout of Power system Network			
	Generation of Electric Power:			
	Overview of conventional (Hydro, Thermal and Nuclear)			
	Nonconventional Sources (Solar and Wind) (Block Diag	ram	9	15%
	and Brief Description Only)		/	1.5 /0
	Economics of Generation: Load factor, diversity factor, L	load		
	curve (Brief description only) Numerical Problems.			
	Methods of power factor improvement using capacitors			
	Power Transmission			
TT	Transmission Line Darameters, Desistance inductores	1 1	0	1504

Transmission Line Parameters: Resistance, inductance and capacitance of $1-\Phi$, 2 wire lines-composite conductors

10

15%

Π

Introduction of Overhead transmission and underground transmission Conductors -types of conductors -copper, Aluminium and ACSR conductors -Volume of conductor required for various systems of transmission-Choice of transmission voltage, conductor size -Kelvin's law. Mechanical Characteristics of transmission lines - configuration-Types of Towers. Calculation of sag and tension- supports at equal and unequal heights -effect of wind and ice- sag template9IIIInsulators -Different types -Voltage distribution, grading and string efficiency of suspension insulators. Corona -disruptive critical voltage -visual critical voltage -power loss due to corona -Factors affecting corona - interference on communication lines.9Underground Cables -types of cables -insulation resistance - voltage stress -grading of cables -capacitance of single core and 3 -core cables -current rating.15%IVHVDC Transmission systems: Need and Benefits, SCV, Configuration of TCSC Power distribution systems -Radial and Ring Main Systems - DC and AC distribution: Types of distributors- bus bar8		 (Derivation Required). Inductance and capacitance of 3-Φ lines. Symmetrical and unsymmetrical spacing-transposition-double circuit lines- bundled conductors (Derivation Required) .Numerical Problems Modelling of Transmission Lines: Classification of lines-short lines-voltage regulation and efficiency-medium lines-nominal T and Π configurations-ABCD constants- long lines- rigorous solution- interpretation of long line equation-Ferranti effect. Tuned power lines-power flow through lines-Basics only FIRST INTERNAL EXAMINATION 	M	
voltage stress -grading of cables -capacitance of single core and 3 -core cables -current rating.HVDC Transmission: Comparison between AC &DC Transmission ,Power flow equations and control, Types of DC links15%Flexible AC Transmission systems: Need and Benefits, SCV, 	III	Introduction of Overhead transmission and underground transmissionConductors -types of conductors -copper, Aluminium and ACSR conductors -Volume of conductor required for various systems of transmission-Choice of transmission voltage, conductor size -Kelvin's law.Mechanical Characteristics of transmission lines - configuration-Types of Towers. Calculation of sag and tension- supports at equal and unequal heights -effect of wind and ice- sag templateInsulators -Different types -Voltage distribution, grading and string efficiency of suspension insulators. Corona -disruptive critical voltage -visual critical voltage -power loss due to corona -Factors affecting corona - interference on	9	15%
	IV	 voltage stress - grading of cables - capacitance of single core and 3 - core cables - current rating. HVDC Transmission: Comparison between AC &DC Transmission ,Power flow equations and control, Types of DC links Flexible AC Transmission systems: Need and Benefits, SCV, Configuration of FC + TCR, Series compensation, Configuration of TCSC Power distribution systems – Radial and Ring Main Systems - 	8	15%

	 Protective Relays- Zones of Protection, Essential Qualities- Classification of Relays -Electro mechanical, Static Relays, Microprocessor Based Relay. Electromechanical Relays-Attracted Armature, Balanced Beam, Induction disc, Thermal Relays (Brief Description only) Static Relays-Merits and Demerits, Basic components, Comparison and duality of Amplitude and Phase comparators. Static overcurrent, Differential, Distance Relays, Directional Relay-(principle and Block diagram only) Microprocessor Based Relay-Block diagram and flow chart of Over current Relay, Numerical Relay(Basics Only) 	12	
VI	 Protection of alternator: Stator inter turn, Earth fault Protection and Differential protection Protection of transformers- Percentage Differential Protection-Buchholz Relay Protection of transmission lines-Differential Protection- carrier current protection Causes of over voltages – surges and traveling waves – voltage waves on loss less transmission lines, Bewley Lattice diagram. Protection against over voltages - Surge diverters - Insulation co-ordination 	8	20%
	END SEMESTED EVAM		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.