Course code	Course name	L-T-P-	Year Of
		Credits	Introduction
EE216	ELECTRICAL ENGINEERING	3-0-0-3	2016

Prerequisite : Nil Course objectives

To introduce the fundamental concepts of transformer, alternator, DC machine, induction motor and indicating instruments

Syllabus

Transformers- Principle of operation & different types, DC generator, DC Motor, Alternators in detail, Concepts of three phase Induction motor and types, Principle of Indicating instruments.

Expected outcome

The students will

- i. Get the basic idea of Electrical engineering.
- ii. Be able to differentiate between the types of motors and transformers
- iii. gain information about the function of various measuring instruments and using them

Text Books

- 1. E. Hughes, Electrical & Electronic Technology, 8th ed., Pearson Education, Delhi, 2002.
- 2. B.L. Theraja and A.K. Theraja, AC and DC machines Volume II

Reference books

- 1. Del Toro V, Electrical engineering fundamentals, 2/e. Prentice Hall India. Eastern Economy Edition. 1998.
- 2. E. W. Golding and F. G. Widdis, Electrical Measurements and Measuring Instruments, 5th ed., AH Wheeler & Company, Calcutta, 1993.
- 3. H. Cotton, Advanced Electrical Technology, Sir Isaac Pitman and Sons, London, 1974

Course Plan

Module	Contents	Hours	Semester Exam Marks
I	Transformers- Principle of operation - emf equation - Phasor diagram - Equivalent circuit - OC and SC tests - Basic principles of auto transformer and three phase transformer		15%
II	DC Generator – E.M.F equation- Armature reaction – Commutation - interlopes – power flow diagram – losses and efficiency – voltage regulation – parallel operation – load sharing	8	15%
	FIRST INTERNAL EXAMINATION	•	
Ш	DC Motor- back E.M.F. – speed equation – torques – performance characteristics – power flow diagram losses and efficiency – starter- two point and three point – swinburns test – thyristor control of series and shunt motor.	8	15%
IV	Alternator- Rotating field - Frequency effect of distribution of winding - emf equation - Basic principles of	6	15%

	synchronous motor – Losses and Efficiency - Torque equation - Starting methods - induction motor - Constructional features - Principle of operation of 3 phase induction motor – Vector diagram and equivalent circuits - Starting and speed control of squirrel cage and wound rotor induction motor		
	SECOND INTERNAL EXAMINATION		
V	Three phase Induction motor- types – torque equations- torque slip and torque speed characteristics- power flow diagram – efficiency – equivalent circuit- induction generator Special machines – single phase FHP motor starting methods- double field revolving theory-types and applications – stepper motor –classifications and applications – servomotors – classifications and applications –shaded pole motors –applications	6	20%
	-shaded pole motors -applications		
VI	Principle of Indicating instruments- moving coil, moving iron and dynamometer type instruments- Extension of range of voltmeter and ammeter - Measurement of 3 phase power by two wattmeter method — Principle and working of Induction type energy meter- DC slide wire, potentiometer.	9	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions

 $(15 \times 2 = 30 \text{ marks})$

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(15 \times 2 = 30 \text{ marks})$

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 20 marks and may have not more than four sub divisions.

 $(20 \times 2 = 40 \text{ marks})$