Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
EE214	ELECTRICAL TECHNOLOGY AND	3-0-0-3	2016
	INSTRUMENTATION		

Prerequisites: Nil

Course Objectives:

- To impart understanding of the basic working principles of DC and AC machines.
- To impart understanding of the basic principles of instrumentation and its applications.

Syllabus:

DC Generator- Load Characteristics; DC Motors- Speed & Torque, Performance Characteristics; 3ph Induction Motors-Torque Equation, Characteristics; Alternators- Construction; Regulation-Transformers, Regulation Efficiency; Instrumentation- Calibration, Errors; Transducer Classification.

Expected Outcome:

Upon successful completion of the course, the student will be able to:

- i. Understand the basic working principle, construction, types, performance characteristics and applications of DC generators, DC motors and induction motors.
- ii. Understand the basic working principle, construction, types, EMF equation, voltage regulation, EMF, MMF methods to determine the voltage regulation of alternators.
- iii. Understand the basic working principle, construction, types, equivalent circuit, losses, efficiency, regulation and applications of transformers and predetermine their efficiency by conducting OC and SC.
- iv. Understand the basic principles of instrumentation, measurement standards and types of errors in instruments and measurements and its applications.

Text Books:

- Dr. P. S. Bimbra; Electrical Machinery; Khanna Publishers.
- J. B. Gupta; Theory and principles of Electrical Machines; S. K.Kataria and Sons Tex.

Reference Books:

- A.K.Sawhney; Electrical and Electronic Measurements and Instrumentation; DhanpatRai.
- Alexander Langsdorf A. S.; Theory of AC Machinery; Mc-Graw Hill.
- James.W.Dally, William.F. Riley, Kenneth G. McConnell; Instrumentation for Engineering Measurement.
- Say M.G.; Performance and Design of AC Machines; ELBS.
- William D. Cooper, A.D. Helfrick; Electronic Instrumentation and Measurement Techniques; Prentice Hall.

Course P	lan
----------	-----

Module	Content	Hours	Sem. Exam Marks
I	D.C. Generator: O.C.C.; Condition for Self Excitation; Field Critical Resistance; Critical Speed; Load Characteristics of	7	15%

	Generators; Losses; Power Flow Diagram; Efficiency, Condition for		
	Maximum Efficiency; Applications.		
II	D.C. Motors: Back EMF; Speed and Torque Equation; Starting, Testing of D.C. Motors, Brake Test; Swinburne's Test; Performance and operating characteristics of Shunt, Series and Compound Motors; <i>Applications</i> .	7	15%
	FIRST INTERNAL EXAM		
III	Three Phase Induction Motor : Production of Rotating Magnetic Field; Torque Equation; Torque Slip Characteristics, Equivalent Circuit; <i>Application</i> . Single Phase Induction Motor: Different Types; <i>Application</i> .	7	15%
IV	Alternators: Construction Details, Type; EMF Equation (Winding Factor need not be derived); Synchronous Impedance; Regulation by EMF and MMF Method.	7	15%
SECOND INTERNAL EXAM			
V	Transformer : <i>Construction, Working, Types</i> , EMF Equation, No Load Current; Equivalent Circuit; Phasor Diagram, Regulation, Efficiency, Determination of Regulation and Efficiency from O.C. and S.C. tests; <i>Cooling of Transformer</i> ; Applications.	7	20%
VI	Introduction to Instrumentation and its Applications: Classification of Instruments; Standards and Calibration; Errors in Instruments and Measurements; Classification of Transducers; Strain Gauges; <i>L.V.D.T.</i> (<i>Linear Variable Differential Transformer</i>), Mc.Leod Gauge, Pirani Gauge, Hot-wire Anemometers; Constant Temperature and Constant Current Methods.	7	20%
	END SEMESTER EXAM		

QUESTION PAPER PATTERN:

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.