Co	ourse code	Course Name	L-T-P-Credits	Year of			
	CS205	Data Structures	2104	Introduction			
Pro-ro	US205 auisite: B1(Data Structures	J-1-0-4	2010			
Cour	se Objective	S	Iving				
Cour	se objective						
1.	To impart a	thorough understanding of linear data structures	such as stacks, que	eues and their			
	applications	с. С.	-				
2.	To impart a	thorough understanding of non-linear data struct	ures such as trees,	graphs and their			
	applications.						
3.	3. To impart familiarity with various sorting, searching and hashing techniques and their						
	performance comparison.						
4.	To impart a	basic understanding of memory management.	V				
Sylla	hue		Y				
Introd	luction to	various programming methodologies terming	ologies and basics	s of algorithms			
analy	sis Basic Al	betract and Concrete Linear Data Structures N	on-linear Data Stru	ctures Memory			
Mono	armont Sort	ting Algorithms, Sourching Algorithms, Hashing		ictures, memory			
Ivialia	gement, Son	ing Argonumis, Searching Argonumis, mashing.					
Expe	cted Outcor	me:					
Stude	nts will be a	ble to					
1.	compare di	fferent programming methodologies and define	e asymptotic not <mark>at</mark>	tions to analyze			
	performance	e of algorithms.					
2.	use appropr	riate data structures like arrays, linked list, stac	ks and queues to s	solve real world			
	problems ef	ficiently.	111 . 1				
3.	3. represent and manipulate data using nonlinear data structures like trees and graphs to design						
4	algorithms for various applications.						
4.	4. Illustrate and compare various techniques for searching and sorting.						
5. 6	illustrate va	rious hashing techniques	in significance.				
0.	indistrate va	nous nushing teeninques.	111				
Text	Text Books:						
1.	Samanta D.	, Classic Data Structures, Prentice Hall India, 2/e	, 2009.				
2.	Richard F.	Gilberg, Behrouz A. Forouzan, Data Structures	: A Pseudocode Aj	pproach with C,			
Defer	2/e, Cengag	e Learning, 2005.					
	Horwitz F	S. Sahni and S. Anderson, Fundamentals of Dat	a Structures in C	University Press			
1.	(India) 200	8	la Suluctures III C,	Oniversity Tress			
2.	Aho A. V.	. J. E. Hopcroft and J. D. Ullman, Data Stu	ructures and Algo	rithms. Pearson			
	Publication	,1983.					
3.	Tremblay J	. P. and P. G. Sorenson, Introduction to Data	Structures with Ap	plications, Tata			
	McGraw Hi	ill, 1995.					
4.	Peter Brass, Advanced Data Structures, Cambridge University Press, 2008						
5.	Lipschuts S., Theory and Problems of Data Structures, Schaum's Series, 1986.						
6.	Wirth N., A	lgorithms + Data Structures = Programs, Prentice	e Hall, 2004.	~~ -			
7.	Hugges J. K	A. and J. I. Michtm, A Structured Approach to Pro	ogramming, PHI, 1	987. 1 Will 2 000			
8.	Martin Bar	rett, Clifford Wagner, And Unix: Tools For So	ottware Design, Jo	nn wiley, 2008			
	reprint.						

COURSE PLAN					
Module	Contents	Hours (56)	Sem. Exam Marks		
I	Introduction to programming methodologies – structured approach, stepwise refinement techniques, programming style, documentation – analysis of algorithms: frequency count, definition of Big O notation, asymptotic analysis of simple algorithms. Recursive and iterative algorithms.	9 M	15%		
П	Abstract and Concrete Data Structures- Basic data structures – vectors and arrays. Applications, Linked lists:- singly linked list, doubly linked list, Circular linked list, operations on linked list, linked list with header nodes, applications of linked list: polynomials,.	9 9	15%		
III	Applications of linked list (continued): Memory management, memory allocation and de-allocation. First-fit, best-fit and worst-fit allocation schemes Implementation of Stacks and Queues using arrays and linked list, DEQUEUE (double ended queue). Multiple Stacks and Queues, Applications.	9	15%		
IV	 String: - representation of strings, concatenation, substring searching and deletion. Trees: - m-ary Tree, Binary Trees – level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive and non-recursive), applications. Binary search tree – creation, insertion and deletion and search operations, applications. 	10	15%		
V	Graphs – representation of graphs, BFS and DFS (analysis not required) applications. Sorting techniques – <i>Bubble sort, Selection Sort,</i> Insertion sort, Merge sort, Quick sort, Heaps and Heap sort. Searching algorithms (Performance comparison expected. Detailed analysis not required)	09	20%		
VI	Linear and Binary search. (Performance comparison expected. Detailed analysis not required) Hash Tables – Hashing functions – Mid square, division, folding, digit analysis, collusion resolution and Overflow handling techniques.	10	20%		

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - <u>Three</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All <u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering module III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.

2014

- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.