	Course Name	-Credits		troduction
CS203		3-1-0-4		
Pre-requisite: Nil				
1. To impart an understanding of the basic concepts of Boolean algebra and digital systems. 2. To impart familiarity with the design and implementation of different types of practically used sequential circuits. 3. To provide an introduction to use Hardware Description Language				
Syllabus Introduction to Number Systems, Boolean Algebra, Canonical Forms, Logic Gates, Digital Circuit Design, Combination Logic Circuit Design, Sequential Circuit Design, Registers, Counter, Memory modules, Programmable Logical Arrays, Hardware Description Language for Circuit Design, Arithmetic algorithms				
Expected Outcome: Students will be able to:- 1. apply the basic concepts of Boolean algebra for the simplification and implementation of logic functions using suitable gates namely NAND, NOR etc. 2. design simple Combinational Circuits such as Adders, Subtractors, Code Convertors, Decoders, Multiplexers, Magnitude Comparators etc. 3. design Sequential Circuits such as different types of Counters, Shift Registers, Serial Adders, Sequence Generators. 4. use Hardware Description Language for describing simple logic circuits. 5. apply algorithms for addition/subtraction operations on Binary, BCD and Floating Point Numbers.				
Text Books: 1. Mano M. M., Digital Logic \& Computer Design, 4/e, Pearson Education, 2013. [Chapters: 1, 2, 3, 4, 5, 6, 7]. 2. Floyd T. L., Digital Fundamentals, 10/e, Pearson Education, 2009. [Chapters: 5, 6]. 3. M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007. [Chapter $10.1,10.2,10.5,10.6,10.7]$. 4. Harris D. M. and, S. L. Harris, Digital Design and Computer Architecture, 2/e, Morgan Kaufmann Publishers, 2013 [Chapter 4.1, 4.2]				
References: 1. Tokheim R. L., Digital Electronics Principles and Applications, 7/e, Tata McGraw Hill, 2007. 2. Mano M. M. and M. D Ciletti, Digital Design, 4/e, Pearson Education, 2008. 3. Rajaraman V. and T. Radhakrishnan, An Introduction to Digital Computer Design, 5/e, Prentice Hall India Private Limited, 2012. 4. Leach D, Malvino A P, Saha G, Digital Principles and Applications, 8/e, McGraw Hill Education, 2015.				
COURSE PLAN				
Module	Conten		Contact Hours (52)	

VI	Memory and Programmable Logic: Random-Access Memory (RAM)—Memory Decoding-Error Detection and Correction - Read only Memory (ROM), Programmable Logic Array (PLA). HDL: fundamentals, combinational logic, adder, multiplexer. Arithmetic algorithms: Algorithms for addition and subtraction of binary and BCD numbers, algorithms for floating point addition and subtraction.	08	20\%

Question Paper Pattern:

1. There will be five parts in the question paper - $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$
2. Part A
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
a. Total marks : 18
b. Three questions each having $\underline{9}$ marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
a. Total marks : 18
b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
a. Total Marks: 40
b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/design/numerical questions.
