Course code	Course Name	L-T-P Credits	Year of Introduction
CS201	DISCRETE COMPUTATIONAL STRUCTURES	3-1-0-4	2016
Pre-requisite: NII			
Course Objectives	8		
1. To introduc	e mathematical notations and concepts i	n discrete mathema	tics that is
essential for	computing.	ALAN	$\vee 1$
2. To train on	mathematical reasoning and proof strate	egies.	1
3. To cultivate	analytical thinking and creative problem	m solving skills.	-
Syllabus Review of Set t combinations, Pige (semigroups, mono Calculus, Proof Tee	heory, Countable and uncountable con Hole Principle, Recurrence Relation bids, groups, rings, fields), Posets and chniques.	Sets, Review of ons and Solutions, Lattices, Preposition	Permutations and Algebraic systems onal and Predicate
Expected Outcom Students will be ab 1. identify an in different 2. verify the v	e: le to d apply operations on discrete structure areas of computing. validity of an argument using proposition reacted using direct proof proof by cont	es such as sets, relation and predicate log	tions and functions
proof by ca	ises, and by mathematical induction.	raposition, proor by	
4. solve probl	ems using algebraic structures.	hinatorias	
6. apply recur	rence relations to solve problems in diff	Ferent domains.	
Text Books	Den I Manalan D. (Dianata Math	4 1 G4	41. A
Computer S 2. Ralph. P.	Science", Tata McGraw–Hill Pub.Co.Lt Grimaldi, "Discrete and Combin	d, New Delhi, 2003 atorial Mathemati	cs: An Applied
Introduction	n", 4/e, Pearson Education Asia, Delhi, 2	2002.	
1 Lin C L "	Elements of Discrete Mathematics" 2/e	McGraw_Hill Int	editions 1988
2. Bernard K	olman, Robert C. Busby, Sharan C.	utler Ross, "Disci	rete Mathematical
3. Kenneth H.	Rosen, "Discrete Mathematics and its A	pplications", 5/e, Ta	ata McGraw – Hill
4. Richard Joh	nsonbaugh, "Discrete Mathematics", 5/	e, Pearson Educatio	n Asia, New
5. Joe L Mott, Scientists a	 Abraham Kandel, Theodore P Baker, " and Mathematicians", 2/e, Prentice-Hall	Discrete Mathemati India, 2009.	cs for Computer

Course Plan					
Module	Contents	Hou rs (54)	End Sem Exam Marks		
Ι	Review of elementary set theory : Algebra of sets – Ordered pairs and Cartesian products – Countable and Uncountable sets Relations :- Relations on sets –Types of relations and their properties – Relational matrix and the graph of a relation – Partitions – Equivalence relations - Partial ordering- Posets – Hasse diagrams - Meet and Join – Infimum and Supremum Functions :- Injective, Surjective and Bijective functions - Inverse of a function- Composition	3 6	15 %		
Ш	Review of Permutations and combinations, Principle of inclusion exclusion, Pigeon Hole Principle, Recurrence Relations : Introduction- Linear recurrence relations with constant coefficients- Homogeneous solutions – Particular solutions – Total solutions Algebraic systems :- Semigroups and monoids - Homomorphism, Subsemigroups and submonoids	3 4 2	15 %		
	FIRST INTERNAL EXAM				
III	Algebraic systems (contd):- Groups, definition and elementary properties, subgroups, Homomorphism and Isomorphism, Generators - Cyclic Groups, Cosets and Lagrange's Theorem Algebraic systems with two binary operations- rings, fields-sub rings, ring homomorphism	6	15 %		
IV	Lattices and Boolean algebra :- Lattices –Sublattices – Complete lattices – Bounded Lattices – Complemented Lattices – Distributive Lattices – Lattice Homomorphisms. Boolean algebra – sub algebra, direct product and homomorphisms	7	15 %		
SECOND INTERNAL EXAM					
V	Propositional Logic:- Propositions – Logical connectives – Truth tables Tautologies and contradictions – Contra positive – Logical	2	20 %		

	equivalences and implications		
	Rules of inference: Validity of arguments.	3	
VI	Predicate Logic:- Predicates Variables Free and bound variables Universal	3	
	and Existential Quantifiers – Universe of discourse.	5	
	Logical equivalences and implications for quantified statements	. A	
	– Theory of inference : Validity of arguments.	3	20 %
	Proof techniques:	5	
	Mathematical induction and its variants – Proof by Contradiction	1	
	– Proof by Counter Example – Proof by Contra positive.	2	
	END SEMESTER EXAM	3	

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All <u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering module III and IV; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.