Course	e Course name	L-T-P-Credits	Yea	r of		
code			Introduction			
AE301	CONTROL SYSTEM	3-1-0-4	2016			
PREREQUISITE : Nil						
Course objectives						
• To familiarize the modelling of linear time invariant systems and their responses in						
time and frequency domain.						
• To learn state space techniques						
Syllabus Mathematical model of systems transfer function, block diagram System analysis time						
Mathematical model of systems – transfer function – block diagram -System analysis-time						
analysis state diagram						
Fynected outcome						
At the en	d of the semester students will be able to und	lerstand and analyse	the diffe	rent		
he haviour of system performances						
Text Books						
1. I J Nagrath and M. Gopal. Control Systems Engineering. New Age International						
Publishers, New Delhi, 1997						
2. M	. Gopal, Digital Control and State Variable M	Methods, 2 nd ed., T	ata McGr	aw Hill,		
N	ew Delhi, 2003					
Reference	e Books					
1.	G. J. Thaler, Automatic Control Systems, J	aico Publishing Ho	use, Mur	bai, 2005		
2.	K. Ogata, Modern Control Engineering, 4t	h ed., Pearson Edu	cation, De	elhi, 2002		
3.	B. C. Kuo, Automatic Control Systems, 7th	h ed., Prentice Hall	of India, I	New Delhi,		
		. 10	1 D			
4.	R. C. Dorf and R. H. Bishop, Modern Con	trol Systems, 10th e	ed., Pearso	on		
	Education, Denn, 2004	1				
	Course Flan			Somostor		
Module	Contents		Hours	Exam		
mouule	contents		Hours	Marks		
	System Analysis: Systems, subsystems, a	and stochastic and				
	deterministic systems - Principles of autom	natic control -Open				
	loop and closed loop systems -Principles of	f superposition and				
I	homogeneity-Transfer Function Approac	ch: Mathematical				
	models of physical systems and transfer fu	unction approach -		1.50/		
	Impulse response and transfer function	-Determination of	8	15%		
	transfer functions for simple electric	ical, mechanical,				
	electromechanical, hydraulic and pneu	matic systems -				
	Analogous systems -Multiple-input multip	ple-output systems:				
	Block diagram algebra - block diagram	reduction -Signal				
	flow graphs -Mason's gain formula.					
	Time Domain Analysis: Standard test sig	mals -Response of				
	systems to standard test signals -Sten re	esponse of second				
II	order systems - Time domain specification	s (of second order	8	15%		
	system) -Steady state response -Steady stat	te error -Static and				
	dynamic error coefficients -Zero input and	zero state response				
FIRST INTERNAL EXAMINATION						
III	Stability of linear systems -absolute stabilit	y -relative stability	8	15%		

	-Hurwitz and Routh stability criterion -Root locus method - construction of root locus -root contours -root sensitivity to gain k -effect of poles and zeros and their locations on the root locus.				
IV	Frequency Domain Analysis: Frequency response representation -Frequency domain specifications -Correlation between time and frequency response -Polar plots - Logarithmic plots -Bode plots – All pass, minimum-phase and non-minimum-phase systems -Transportation lag - Stability in frequency domain -Nyquist stability criterion - Stability from polar and bode plot -Gain margin and phase margin -relative stability -M-N circles -Nichols chart.	9	15%		
SECOND INTERNAL EXAMINATION					
V	State Variable Analysis: Concepts of state, state variables, state vector and state space -State model of continuous time systems Transformation of state variable -Derivation of transfer function from state model -invariance property	9	20%		
VI	State diagram -State variable from transfer function -bush or companion form -controllable canonical form - observable canonical form -Jordan canonical form -Diagonalization-State transition matrix -computation of state transition matrix by Laplace transform, Cayley-Hamilton theorem -Controllability and observability of a system. (proof not required)	10	20%		
	END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN:

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014