Course	Course name	L-T-P-Credits	Y	ear of			
code			Intr	oduction			
AE468	NANO ELECTRONICS	3-0-0-3		2016			
Course objectives							
• To impart the basic concepts of nanotechnology							
• To develop understanding about application of nanomaterials.							
Syllabus							
Introduct	on to nanotechnology and Nano electronic	cs- fabrication of	of nano	materials-			
Introduct	on to characterization tools of nano materials-	basic properties of	of 2d sen	niconductor			
nanostructures- The concept of super lattices Kronig - Penney model of super lattice-							
Nanoelec	Nanoelectonic devices and systems- Nanocomposites- nanofillers						
Expected	Expected outcome						
• At the end of the semester students will have good idea regarding nano electronics							
and their various applications.							
	KS M. Martinaz Duart P. I. Martin Balma F. Agulla	Duada "Namataal	molom	for			
1. J.M. Martinez-Duari, R.J. Martin Palma, F. Aguile Rueda Nanolechnology for Microalactuonics and entoclocitronics" Election 2006							
Microelectronics and optoelectronics , Elsevier, 2006.							
Referenc	e hooks	ies , Springer, 200).)				
1 C	attopadhyay Banerice. "Introduction to Nanos	cience & Technold	ogy".PH	2009			
2 Diwanand and Bharadwai " <i>Nanoelectronics</i> " Pentagon Press Delhi 2006							
3. G	oser, P. Glosekotter, J. Dienstuhl, "Nanoelectron	nics and nanosyst	ems", Sp	ringer			
20	04.		, I	e			
4. Po	oole, "Introduction to Nanotechnology", John V	Viley 2006					
5. Pu	ılikel M. Ajayan," <i>Nanocomposite sci<mark>e</mark>nce and t</i>	echnology", Wile	y-VCH 2	2005			
6. Su	apriyo Dutta, " <i>Quantum Transport- A<mark>to</mark>m to tra</i>	<i>nsistor</i> ", Cambrid	ge Univ	ersity			
Pı	ess, 2005.						
7. T. Pradeep, "Nano the Essentials", TMH, 2007.							
	Course Plan			<u>a</u>			
N. I. I.	0		TT	Semester			
Niodule	Contents		Hours	Exam Morelya			
т	Introduction to panetochnology and Nor	no alastronias	7				
1	Impacts Limitations of conventional m	lo electronics,	/	13%			
	Introduction to methods of fabrication of u	nano materials-					
	different approaches fabrication of nano-l	avers -Physical					
	Vapor Deposition Chemical Vapor Deposition	sition Epitaxy.					
	Molecular Beam Epitaxy. Ion Implantation	Formation of					
	Silicon Dioxide. Fabrication of nanoparticle	- grinding with					
	iron balls, laser ablation, reduction methods	s, sol gel, self-					
	assembly.						
II	Introduction to characterization tools of na	no materials	6	15%			
	principle of operation of STM, AFM, SEM, 7	TEM, XRD, PL					
	& UV instruments. Mesoscopic	Physics and					
	Nanotechnologies - trends in Microel	lectronics and					
	Optoelectronics, characteristic lengths i	n mesoscopic					
	systems, Quantum mechanical coherer	nce, Quantum					
wells, wires and dots, Density of states and dimensionality.							
FIRST INTERNAL EXAMINATION							
III	The physics of low dimensional structures -	basic properties	7	15%			

	of two dimensional semiconductor nanostructures, square quantum wells of finite depth, parabolic and triangular quantum wells, quantum wires and quantum dots. Semiconductor quantum nanostructures and super lattices – MOSFET structures, Heterojunctions, Quantum wells, modulation donad quantum wells, multiple quantum wells.				
IV	The concept of super lattices Kronig - Penney model of super lattice. Transport of charge in Nanostructures under Electric field - parallel transport, perpendicular transport, quantum transport in nanostructures. Transport of charge in magnetic field and quantum Hall effect - Effect of magnetic field on a crystal, the Aharonov-Bohm effect, the Shubnikov-de Hass effect, the quantum Hall effect.	7 M 4 L	15%		
	SECOND INTERNAL EXAMINATION				
V	Nanoelectonic devices and systems - MODFETS, heterojunction bipolar transistors, resonant tunnel effect, RTD, RTT,hot electron transistors, Coulomb blockade effect and single electron transistor, CNT transistors, heterostructure semiconductor laser, quantum well laser, quantum dot LED, quantum dot laser, vertical cavity surface emitting laser, quantum well optical modulator, quantum well sub band photo detectors, Infrared detector, Nano switches, principle of NEMS	8	20%		
VI	Nanocomposites, nanofillers, high performance materials, polymer nanocomposites, nanoclays, nanowires, nanotubes, nanoclusters etc. Smart materials, self-assembly of materials, safety issues with nanoscale powders.	7	20%		
END SEMESTER EXAMINATION					

QUESTION PAPER PATTERN:

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Estd.