Course	Course name	L-T-P-	Y	ear of			
code		Credits	Intr	oduction			
AE467	CMOS CIRCUIT DESIGN	3-0-0-3		2016			
Prerequisite: EC204 Analog integrated circuits							
Course objectives							
• To give ideas about basic amplifiers, current Mirrors and Differential Amplifiers							
• To impart idea of static and switching characteristics of the CMOS Inverter							
• To	study the operation of pass transistor logic and tra	nsmission gat	es				
• To	analyse Operational Amplifiers on its design and s	stability factor	rs				
• To familiarise different types of Memory and its decoder Circuits							
Syllabus	TECLINDIO	162.	A . I				
Review of	single stage MOS Amplifiers - current Mirrors -	Differential	Amplifie	rs - CMOS			
Inverter -	Sequential Logic Circuits- Different CMOS	Flip flop -	MOS (Operational			
Amplifier	s- Stability and frequency compensation in Op an	mps - Design	of a tw	o stage Op			
amp - CM	OS Circuit and Logic Design - Arithmetic Circuit	its in CMOS	VLSI - I	Low power			
design - D	Designing Memory and Array Structures- Designing	ng Combinatio	onal Log	ic Gates in			
CMOS.		-	-				
Expected	outcome						
• At	the end of the semester students will be able to ob	tain comprehe	ensive kn	owledge			
in	CMOS Circuit Design.	-		-			
Text Books							
1. Do	uglas A. Pucknell and K. Eshragian., "Basic VLSI	Design" 3 rd	Edition.	PHI, 2000.			
2. Jol	nn P. Uyemura, "Introduction to VLSI Circuits and	Systems", Joł	ın Wiley	& Sons			
20	02						
3. Ke	sshab K. Parhi, "VLSI DIGITAL SI <mark>G</mark> NAL PROCI	ESSING SYS	TEMS",	John			
Wi	ley & Sons 2002						
4. Neil. H.E. Weste and K. Eshragian, "Principles of CMOS VLSI Design". 2 nd Edition.							
Addison-Wesley, 2000.							
5. R. Jacob Baker, Harry W. LI., & David K. Boyce., "CMOS Circuit Design", 3 rd							
Inc	lian reprint, PHI, 2000.						
References							
1. Jar	1. Jan M. Rabaey and et al, "DIGITAL INTEGRATED CIRCUITS", Pearson Edn. Inc.						
20	2003						
2. Ka	2. Kang & Leblebigi "CMOS Digital IC Circuit Analysis & Design"- McGraw Hill,						
20	03						
3. We	este and Eshraghian, "Principles of CMOS VLSI de	<mark>sign" A</mark> ddiso.	<i>n</i> -Wesley	, 2002			
2014							
Course Plan							
				Semester			
Module	Contents		Hours	Exam			
T			<i>.</i>	Marks			
1	Keview of single stage MOS Amplifiers CS, C	D, CG and	6	15%			
	cascode Amplifiers . Design of current Mirro	Drs, Wilson					
	current mirrors and Widlar current mirrors.	Band gap					
	voltage reference Differential Amplifiers: N	VIUS Load					
	Current Source, Current Mirror, Cascade Load.						
TT			7	150/			
11	UNIOS Inverter-Static Characteristics, Derivatio	n for VIH,	/	13%			

	V IL and VIH Switching Characteristics and Calculation of				
	delay times Sequential Logic Circuits- Different CMOS Flip				
	flops Theory of operation and Circuits of Pass transistor				
	Logic and transmission gate.				
FIRST INTERNAL EXAMINATION					
III	MOS Operational Amplifiers, Cascode and Folded Cascode	7	15%		
	opamps . Stability and frequency compensation in Op amps.				
	Design of a two stage Op amp DRAM, SRAM, Sense				
	Amplifiers, Design of Row and Column Decoders Flash	N.A			
	Memory- NOR and NAND Flash Memory Cell	111			
	TECHNIQUOQUE	A T			
IV	CMOS Circuit and Logic Design-CMOS Logic structures.	7	15%		
	Advanced techniques in CMOS Logic Circuits-Mirror	h. And			
	circuits, Pseudo NMOS, Tri-state circuits, Clocked CMOS,				
	Dynamic CMOS Logic circuits, Dual Rail Logic Networks.				
	SECOND INTERNAL EXAMINATION				
V	Arithmetic Circuits in CMOS VLSI-Bit Adder Circuits,	8	20%		
	Ripple Carry Adder, Carry Look Ahead Adders, Other High				
	speed adders-Multiplexer based fast binary adders,				
	Multipliers-Parallel multiplier, Wallace Tree and Dadda				
	multiplier, Low power design- Scaling Versus Power				
	consumption, Power reduction techniques.				
VI	Designing Memory and Array Structures - Memory	7	20%		
	classification, Memory Core - Read Only Memories, Non-				
	volatile Read Write Memories, Read Write Memories,				
	Content - Addressable or Associative Memories, Memory				
	Peripheral Circuits - Address Decoders, Sense Amplifiers,				
	Designing Combinational Logic Gates in CMOS.				
END SEMESTED EXAMINATION					

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

