Course code	Course name I	2-T-P-Credits	Year of Introduction
AE466	INDUSTRIAL ROBOTICS	3-0-0-3	2016
Prerequis			
ToTo	familiarise automation and brief history of robot a study the kinematics of robots. give knowledge about robot end effectors and their	design.	
	To learn about Robot Programming methods & Lan	nguages of robo	t. /
Basic conconsiderat		edback compo	onents- General
i. ii.	be equipped with the automation and brief history be familiarized with the kinematic motions of robo	ot.	
iii.	have good knowledge about robot end effectors ar	id their design c	oncepts.
	ks . Klafter, Thomas A. Chmielewski and Michael Ne <i>ated Approach</i> ", Prentice Hall India, 2002	gin, "Robotic Ei	ngineering -
Pu 2. K.S Int 3. Mi	b S.R., " <i>Robotics Technology and Flexible Automo</i> blishing Co., Ltd., 1994. S. Fu., R.C.Gonalez, C.S.G.Lee, " <i>Robotics Control</i> elligence, McGraw Hill International Edition, 1987 kell P. Groover, Mitchell Weiss, " <i>Industrial Robotic</i> <i>d Applications</i> ", McGraw Hill International Edition	l Sensing ", Visi ics, Technology,	on and Programming
	Course Plan		
Module	Contents	Hours	Semester Exam Marks
I	configuration of robots, joint notation schemes, volume, introduction to manipulator kiner	natics, everse in two ension, s, D-H	15%
II	Basic control system models, slew motion, j interpolated motion and straight line motion, cont like on/off, proportional, integral, proportional integral, proportional plus derivative, proportional	rollers 1 plus	15%

	FIRST INTERNAL EXAMINATION	ı	1
III	Robot actuation and feedback components position and velocity sensors, actuators and power transmission devices, mechanical grippers, vacuum cups, magnetic grippers, pneumatic, electric, hydraulic and mechanical methods of power and control signals to end effectors.	7	15%
IV	General considerations in robot material handling, material transfer applications, pick and place operations, palletizing and related operations, machine loading and unloading, die casting, plastic molding, forging, machining operations, stamping press operations using robots.		15%
	SECOND INTERNAL EXAMINATION		
V	Robot Programming and AI: Methods - Languages - Computer control and Robot Software -VAL Language – Trajectory Planning, Basic robot motions - Point to point control & continuous path control and interpolations AI – Basics – Goals-AI Techniques – AI & Robotics.	7	20%
VI	Robot cell layouts , multiple robots and machine interface, other considerations in work cell design, work cell control, interlocks, error detection and recovery, work cell controller, robot cycle time analysis.	7	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN:

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

2014

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)