Course	Course name	L-T-P-	Year Of		
code		Credits	Introduction		
AE464	NON-LINEAR CONTROL SYSTEM	3-0-0-3	2016		
Prerequisite : AE301 Control system					
Course objectives					
• <u>To</u>	familiarize the modelling of simple mechanical system	s.			
• To	analyse stability of nonlinear control systems				
Syllabus		T			
Linear vs	non-linear system - Common Nonlinearities in cont	rol systems	- mass spring		
system - r	nethod of iscocianes- phase plane analysis of linear sys	Stems- phase	e plane analysis		
functions	of common nonlinearities Concents of Stability Lines	Fundament	Local Stability		
- I vanuno	y's Direct Method - Generation of Lyapunov functions	-Popov's s	tability criterion		
- Non-Lir	ear control system design-stabilisation problems-trac	king proble	ems - Issues in		
constructi	ng non-linear controllers- available methods of non-linear	ar control de	sign.		
Expected	outcome		0		
• At	the end of the semester students must be able to underst	and and ana	lyse the		
dif	ferent behaviour of system performances and Stability to	echnique.			
Text Bool	KS				
1. Jea	an Jacques Slotine and Weiping Li, "Applied Nonlinear	Control", P	rentice Hall		
	2., 1991.	1 - 1			
2. H.	K. Khalil., "Nonlinear Systems", Pearson Education, 3"	Ed.	TT:11 T 4.1 NT		
5. M	Gopal "Digital Control and State variable Methods", 1a	ta McGraw-	Hill Ltd, New		
	ann, 2003.	ne			
. 110	Course Plan	115			
			Semester		
Module	Contents	Hou	ırs Exam		
			Marks		
Ι	Introduction: Linear vs non-linear system- non-l	inear 7	15%		
	systems and equilibrium points- non-linear sy	vstem			
	behavior-examples-Common Nonlinearities in co	ontrol			
	systems-Autonomous and non-autonomous syst	ems-			
	modelling of simple pendulum- mass spring sys	stem-			
TT	analysis and design of nonlinear system.	n of 7	150/		
11	phase portraits, method of iscoclanes, phase plane and	ll OI /	1370		
	of linear systems- phase plane analysis of non-l	inear			
	systems- local behaviour of non-linear systems-	limit			
	cycles- Stability- poincare- bendixon theorems.				
FIRST INTERNAL EXAMINATION					
III	Describing Function: Describing Function Fundamen	tala 7			
	Deservering Function. Deservering Function Function	tais - 7	15%		
	Describing functions of common nonlinearities-hys	teris,	15%		
	Describing functions of common nonlinearities-hys backlash, relay, deadzone, saturation and combined eff	teris, fects-	15%		
1	Describing functions of common nonlinearities-hys backlash, relay, deadzone, saturation and combined eff stability analysis and limit cycles.	teris, fects-	15%		
157	Describing functions of common nonlinearities-hys backlash, relay, deadzone, saturation and combined eff stability analysis and limit cycles.	teris, fects-	15%		
IV	Describing functions of common nonlinearities-hys backlash, relay, deadzone, saturation and combined eff stability analysis and limit cycles.	teris, fects-	15%		
IV	Describing function: Describing function function Describing functions of common nonlinearities-hys backlash, relay, deadzone, saturation and combined eff stability analysis and limit cycles. Stability of nonlinear systems-Lyapunov theory (rev autonomous and non-autonomous systems equilib points. Stability in the same of Lyapunov course	teris, fects- iew)- prium	15%		

	stability, Lyapunov's direct method, positive definite functions and Lyapunov functions, Lyapunov theorem for local stability and global stability			
SECOND INTERNAL EXAMINATION				
V	Analysis based on Lyapunov's direct method-LTI systems- Krasovskii's method, Variable gradient method for constructing Lyapunov functions-simple examples, Popov's stability criterion. Stability of non-autonomous systems (basic concepts only)- Lyapunov's direct method – simple problems.	7 Al	20%	
VI	Non-Linear control system design-stabilisation problems- tracking problems-relations between stabilization and tracking problems-desired behaviour of nonlinear systems- Issues in constructing non-linear controllers- available methods of non-linear control design.	7	20%	
END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN:

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

Estd.

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

2014

(15 x 2 = 30 marks)

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)