Course	Course name	L-T-P-	Year of
code		Credits	Introduction
AE431	CONTROL SYSTEM AND SIGNAL PROCESSING	0-0-3-1	2016
	LAB		
	site : AE301 & AE306		
Course o	0		
	give hands on experience in various digital Signal Processin		es using TMS
	OC6X family processors and in control system analysis using	MATLAB.	
	xperiments	NA.	
	OL SYSTEM LAB using MATLAB	1141	
	Familiarization of MATLAB commands used in control syste		
2.	Representation of system in MATLAB: state space represent	ation & tra	nsfer function
	representation		
	Stability analysis using Bode plot, root locus & their pole-ze		
4.		ethod for Is	t order system.
5.		1	
6.		nk.	
	Pole placement technique applied to stabilize a system.		
	Realization of a compensator design.		
	Modelling and analysis of a first order system.	plata avata	m ata)
	. Modelling of an unstable system (inverted pendulum, ball & ed Control	plate syste	III etc.)
	PLC programming: familiarization of instruction set.		
	PLC programming: simulation of process control.		
2. 3.			
6.	Familiarization of Distributed Control System (DCS) with di	ifferent pro	cess stations
т.	pressure, flow and level.	merent pro	cess stations
LabVIE	W based Virtual Instrumentation		
	Getting started with LabVIEW: Basic operations, controls, ir	ndicators, a	nd simple
	Programming structures.	iuicutois, u	na simpro
2.	Debugging a VI and sub-VI.		
	Familiarization of DAO card.		
	PROCESSING LAB Estd.		
1.	Familiarization of signal processing commands used in MAT	LAB Softw	vare.
	Developing elementary signal function modules (m-files) for		
	exponent and ramp sequence.		
3.	Generating continuous and discrete time sequences.		
4.	Carrying out mathematical operations on signals.		
5.	Response of LTI system described by difference and differen	itial equation	on.
6.	Developing a program for computing inverse Z-Transform.		
	Developing program for finding magnitude & phase response	e of LTI Sy	rstem
	Developing program for computing DFT & IDFT.		
	Developing a program for computing circular convolution.		
	D. Design of filter: FIR, IIR, ECG Signal filter (can be done as	3 separate	experiments).
Expected	outcome		
	t the end of the semester students are expected to be familiar w	vith the basi	c signal
pr	ocessing & control system techniques.		