Course	Course name	L-T	-P-	Year of			
code	DIGITAL CONTROL OVOTEM		dits	Introduction			
AE407	bigHAL CONTROL SYSTEM	3-0-	0-3	2016			
Course	biostives						
Course objectives							
	• To study the stability analysis of digital control system						
	b equip the basic knowledge of digital process contr	tor design					
Discrete	Data Control Systems - Signal conversion & proc	essing - 7	-transfo	rm- inverse 7-			
transform	transform - Digital control systems - Pulse transfer function - Stability tests Frequency domain						
analysis	of discrete systems - State space representation - Co	ntrollabili	ty and O	bservability -			
Expected	Expected outcome						
• A	• At the end of the semester Students will have knowledge of digital process control						
de	design.						
Text Boo	oks	1 1		_			
1. B	. C. Kuo, "Digital control systems" (Second Edition	n), Oxfor	d Unive	rsity Press,			
20	007						
2. K	. Ogatta, "Discrete Time control systems", 2nd ed.	(PHI),199	95				
3. M	I. Gopal, "Digital Control systems and state variabl	e methods	", Tata N	/Ic Graw Hill.			
Reference	e						
1. Jo	ohn Dorsey, "Continuous & Discrete Control System	<i>ms</i> ", (MG	H).				
2. N	agrath & Gopal , "Control System Engineering" (W	Viley Easte	ern).				
	Course Plan			a (
Madula	Contenta		Uoung	Semester			
wiodule	Contents		nours	Exam Morks			
T	Introduction: Basic Flements of discrete data	control	6	15%			
-	systems, advantages of discrete data control	systems.	0	1370			
	examples						
	Signal conversion & processing: Digital signals &	coding,					
	data conversion & quantization, sample and hold devices,						
	Mathematical modeling of the sampling process	ss; Data					
	reconstruction and filtering of sampled signals: Ze	ero order					
	hold, first order Hold and polygonal hold.						
II	Review of Z transform. z transform and in	iverse z	6	15%			
	transform . Relationship between s- plane and z- p	olane-					
	Difference equation . Solution by recursion	and z-					
	transform.						
		TION					
TTT	FIRST INTERNAL EXAMINA	ion =	0	200/			
111	Digital control systems - Pulse transfer funct	IOII . Z	ŏ	20%			
	Modified z transfer function Stability of lines	systems-					
	control systems	u uigitai					
	condor systems						
IV	Stability tests- Steady state error analysis- Root lo	ci -	8	20%			
11	Frequency domain analysis- Rode plots- Gain mar	oin and	0	2070			
<u>l</u>		on und		1			

	phase margin				
SECOND INTERNAL EXAMINATION					
V	Review of state space techniques to continuous data systems, state space representation of discrete time systems- Transfer function from state space model-various canonical forms- conversion of transfer function model to state space model-characteristics equation- solution to	7	15%		
	discrete state equations.	AN			
VI	Controllability and Observability - Response between sampling instants using state variable approach-Pole placement using state feedback . Dynamic output feedback- Effects of finite wordlength on controllability and closed loop pole placement-		15%		
END SEMESTER EXAMINATION					

QUESTION PAPER PATTERN:

Maximum Marks:100

Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)