Course code	Course name	L-T-P-Credits	Yea	ar of	
		4004	Introd	luction	
AE401	LOGIC & DISTRIBUTED CONTROL SYSTEM	4-0-0-4	20	16	
Prerequisite:	AE301 Control system				
Course object	tives				
 To giv 	e an introductory knowledge about I	PLC and the progr	amming langu	ages.	
• To giv	e basic knowledge in the architectur	e and local control	unit of distrib	outed contr	
ol syst	em.		AAA		
• To giv	e adequate information in the interfa	ces used in DCS.	AIVI		
• To giv	e basic knowledge about Computer	Controlled System	IS.		
Svllabus			AL		
Programmabl	e Logic Controller - Architecture	of PLC - Desig	n of PLC -	PLC Basic	
Functions - A	pplications Of PLC - Instructions in	n PLC - PLC pros	ramming met	hods as per	
IEC 61131 –	SCADA - Distributed Control Syst	em - Architectu	res - Interface	es In DCS -	
Process Safet	& Safety Management System - Ri	sk Terminologies	- Instrumented	l System.	
Expected out	come			2	
At the end of	the course, students will be able to :				
i. Ur	derstand the basics of PLC and PLC	Programming			
ii. Kr	low the whereabouts of implementat	ion of SCADA			
iii. Re	produce the working of Distributed	Control System			
iv. Pe	rform the implementation of DCS				
v. Re	cognise the safety procedures to be 1	naintained in an ii	ndustry		
Text Books					
1. John.	W. Webb Ronald A Reis - Progr <mark>am</mark> n	nable Logic Contro	ollers - Princip	oles and	
Applic	cations, Fourth edition, Prentice Hall	Inc., New Jersey,	1998.		
2. Micha	el P. Lukas, 'Distributed Control Sys	stems', Van Nostr	and Reinhold		
Co.,Ca	unada,1986				
3. Petruz	ella, 'Industrial Electronics', McGra	w Hill, Second ed	ition, 1997.		
Reference Bo	oks				
1. Krishna Kant – Computer based Industrial Control, Prentice Hall, New Delhi, 1997.					
2. Thomas A. Hughes, 'Programmable Logic Controllers', ISA press,2007.					
	Course P	lan			
Module	Contents	H	ours Seme	ster Exam Jarks	
T	Programmable Logic Controller : 1	Evolution of 9	1.5%		
-	PLC's, Components of PLC, Adva	intages over	10,0		
relay logic, Architecture of PLC, Programming					
devices, Discrete and Analog I/O modules,					
Programming languages, Ladder diagram,					
Programming timers and counters, Design of					
	PLC, Definition of PLC, , overview of PLC				
	systems, input/output modules, power supplies,				
	isolators. General PLC programming				
procedures, programming on-off inputs/					
outputs. Auxiliary commands and functions:					
	PLC Basic Functions: Register basics, timer				
	functions, counter functions.				
II	Applications Of PLC : Instruction	ons in PLC 9	15%		

	Program control instructions math				
	instructions sequencer instructions. Use of				
	PCos DI C Application of DI C Case study of				
	hottle filling system DLC programming				
	wethed as non EC (1121 Developing				
	methods as per IEC 01151, Developing				
	programs using Sequential Function Chart,				
	Functional Block Diagram, Analog control				
	using PLC (PID controller configuration),	-			
	Interfacing PLC to SCADA/DCS using	AL	N A		
	communication link (RS232, RS485),	LA	1 V 1		
	Protocols (Modbus ASCII/RTU) and OPC,	ICI			
	Development stages involved for PLC based	IL A			
	automation systems.	1.	h. And		
FIRST INT	ERNAL EXAMINATION	Y			
III	Computer Controlled Systems:	7	15%		
	Basic building blocks of Computer controlled				
	systems, SCADA, Data Acquisition System,				
	Supervisory Control.				
	Direct digital Control.				
IV	Distributed Control System DCS -	10	15%		
1	Architectures Comparison Local control	10	10 /0		
	unit Process interfacing issues				
	Communication facilities Distributed Control				
	System Basics: DCS introduction Various				
	function Plocks DCS components/block				
	diagram DCS Architecture of different malace				
	diagram, DCS Arcmeeture of different makes,				
	comparison of these architectures with				
	automation pyramid, DCS specification, latest				
	trend and developments, DCS support to				
	Enterprise Resources Planning (ERP),				
	performance criteria for DCS and other				
	automation tools.				
	SECOND INTERNAL EXAMINAT	TION			
V	Interfaces In Dcs : Operator interfaces, Low	9	20%		
	level and high level operator interfaces,				
	Operator displays, Engineering interfaces, Low				
	level and high level engineering interfaces,				
	General purpose computers in DCS, DCS detail	1			
	Engineering, configuration and programming,				
	functions including database management,				
	reporting, alarm management, diagnosis.				
VI	Process Safety & Safety Management System :	10	20%		
	Process safety and Safety Management				
	Systems: Introduction to process safety. risk.				
	risk terminologies, consequence and risk, risk				
	measurement. Process Hazard Analysis (PHA)				
	Hazard and operability study (HaZOn) Safety				
	Integrity Level (SII) Introduction to				
	IFC61511 standard for Functional safety				
	protection laware Safety Instrumented System				
	protection rayers, safety monumented system.				

	function,	architecture,	safety	life	cycle,			
Application of safety system.								
END SEMESTER EXAMINATION								

QUESTION PAPER PATTERN

Maximum Marks:100	Exam Duration: 3 Hours
Part A API ABDUL	KALAM
Answer any two out of three questions uniformly cover	ing Modules 1 and 2 together. Each
question carries 15 marks and may have not more than t	four sub divisions.
UNIVERS	(15 x 2 = 30 marks)

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)

2014

Estd