Course	Course name	L-T-P-	Year of
code		Credits	introduction
AE365	INSTRUMENTATION FOR AGRICULTURE	3-0-0-3	2016

Prerequisite : Nil Course Objective

• To impart background information required for studying instrumentation and its application in agriculture.

Syllabus

Necessity of instrumentation & control for agriculture, engineering properties of soil - Flow diagram of sugar plant - fermenter & control - dairy industry - Irrigation systems - irrigation methods - soil moisture measurement methods - Application of SCADA for DAM parameters & control - green houses & instrumentation - Hydraulic, pneumatic & electronics control circuits - classification of pumps—TDR-ground water occurrence confined & unconfined aquifers.

Expected outcome

• At the end of the semester students will have the knowledge about instrumentation in agriculture and some of its applications.

Text Books

- 1. C D Johnson Process control and instrumentation technology, PHI
- 2. Patranabis, Industrial instrumentation, TMH.
- 3. Wills B.A., "Mineral Processing Technology", 4th Ed., Pergamon Press.

Reference:

B.G.Liptak , Instrumentation handbook-process control, Chilton

Course Plan

Course Plan					
Module	Contents	Hours	Semester		
			exam		
			marks		
I	Necessity of instrumentation & control for agriculture,	8	15%		
	engineering properties of soil: fundamental definitions &				
	relationships, index properties of soil, permeability & seepage analysis, shear strength, Mohr's circle of stress, active & passive earth pressures, stability & slopes, Sensors:				
	introduction to sonic anemometers, hygrometers, fine wire	7			
	thermocouples, open & close path gas analysers, brief	7			
	introduction to various bio-sensors.				
II	Flow diagram of sugar plant & instrumentation set up for it,	6	15%		
	flow diagram of fermenter & control(batch process), flow				
	diagram of dairy industry & instrumentation set up for it,				
	juice extraction control process & instrumentation set up for				
	it.				
FIRST INTERNAL EXAMINATION					
III	Irrigation systems: necessity, irrigation methods: overhead,	7	15%		
	centre pivot, lateral move, micro irrigation systems & it's				
	performance, comparison of different irrigation systems, soil				
	moisture measurement methods: resistance based method,				
	voltage based				
	method, thermal based method, details of gypsum block soil				
	moisture sensor, irrigation scheduling, irrigation efficiencies,				
	design considerations in irrigation channels.				

IV	Application of SCADA for DAM parameters & control,	6	15%		
	irrigation control management up- stream & down - stream				
	control systems, green houses &				
	instrumentation: ventilation, cooling & heating, wind speed,				
	temperature & humidity, rain gauge carbon dioxide				
	enrichment measurement & control.				
SECOND INTERNAL EXAMINATION					
V	Automation in earth moving equipments & farm equipments,	7	20%		
	application of SCADA & PLC in packing industry and cold	N.A			
	storage systems, implementation of	IVI			
	Hydraulic, pneumatic & electronics control circuits in	AT			
	harvester's cotton pickers, tractor etc. classification of pumps:	-\			
	pump characteristics, pump selection & installation.	h. And			
VI	Leaf area length evapotranspiration, temperature, wetness &	8	20%		
	respiration measurement & data logging, electromagnetic				
	radiations photosynthesis, infrared & UV bio sensor methods				
	in agriculture, agro metrological instrumentation weather				
	stations,				
	surface flux measurement, soil water content measurement				
	using time-domain reflectrometery (TDR), ground water				
	occurrence confined & unconfined aquifers, evaluation of				
	aquifer properties, ground water recharge.				
İ	END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(15 \times 2 = 30 \text{ marks})$

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(15 \times 2 = 30 \text{ marks})$

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

 $(20 \times 2 = 40 \text{ marks})$