Course	Course name	L-T-P-	Y	ear of
code		Credits	Inti	oduction
AE307	SIGNALS AND SYSTEMS	3-0-0-3		2016
Prerequis	site : Nil			
Course O	bjective			
• To	impart the basic concepts of continuous and discrete s	signals and	d system	S
• To	develop understanding about frequency domain appro	oaches use	d for an	alysis of
со	ntinuous and discrete time signals and systems.	-		
• To	establish the importance of z-transform and its proper	rties for an	alyzing	discrete
tir	ne signals and systems	LA	IVI	
Syllabus	TECLINIALAC	IC	A.T.	
Introducti	on to signals and systems - Classification of signa	als - Prop	erties of	f systems -
Represent	ation of LTI systems - Continuous & Discrete Tir	ne LTI sy	stems -	Frequency
response	of LTI - Continuous Time Fourier Series - Discret	te Time F	Fourier 7	Fransform -
Laplace [Fransform – Causality and stability- Z Transform-	- Determi	ning the	e frequency
response f	from poles and zeros.			
Expected				
The stude	nts are expected to:			
	we an advanced knowledge in continuous and discrete	e signals ai	nd syster	ns
ii. Ha	we knowledge in z-transform			
Text Boo	ks			
1. Ha	ykin S. & Veen B.V., Signals & Systems, John Wiley			
-	ppenheim A.V., Willsky A.S. & Nawab S.H., Signals a	nd System	s, Tata N	AcGraw
Hi	11			
3. Ta	ylor F.H., Principles of Signals & Systems, McGraw H	Hill		
Reference		_		
	acewell R.N., Fourier Transform & Its Applications, N	McGraw H	lill	
	ykin S., Communication Systems, John Wiley			
	thi B.P., Modern Digital & Analog Communication Sy	vstems, Ox	ford Un	iversity
	ess	*****		
4. Pa	poulis A., Fourier Integral & Its Applications, McGra	W H1ll		
	Course Plan		1	
Module	Contents]	Hours	Semester
				exam
-			_	marks
Ι	Introduction to signals and systems - Classificat		7	15%
	signals - Basic operations on signals - Elementary si			
	Concept of system - Properties of systems - St			
	invertability, time invariance - Linearity - Caus			
	Memory - Time domain description - Convolution - I	Impulse		
	response.			
			_	
II	Representation of LTI systems - Differential equation		5	15%
		systems		
	,Continuous Time LTI systems and Convolution In	ntegral,		
	Discrete Time LTI systems and linear convolution.			
	FIRST INTERNAL EXAMINATION	ON		

III	Frequency response of LTI systems - Correlation theory of deterministic signals - Condition for distortionless transmission through an LTI system - Transmission of a rectangular pulse through an ideal low pass filter - Hilbert transform – Sampling and reconstruction	8	15%
IV	Frequency Domain Representation of Continuous Time Signals- Continuous Time Fourier Series: Convergence. Continuous Time Fourier Transform: Properties. Frequency Domain Representation of Discrete Time Signals- Discrete Time Fourier Transform: Properties, Sampling Theorem, aliasing, reconstruction filter, sampling of band pass signals. Fourier Series Representation of Discrete Time Periodic Signals.	7 M AL	15%
	SECOND INTERNAL EXAMINATION		
V	Laplace Transform – ROC – Inverse transform – properties – Analysis of Continuous LTI systems using Laplace Transform – unilateral Laplace Transform. Relation between Fourier and Laplace Transforms. Laplace transform analysis of systems - Relation between the transfer function and differential equation - Causality and stability - Inverse system - Determining the frequency response from poles and zeros	7	20%
VI	convergence - Properties of the Z transform - Analysis of LTI systems - Relating the transfer function and difference equation - Stability and causality - Inverse systems - Determining the frequency response from poles and zeros	7	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN:

Maximum Marks:100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 15 marks and may have not more than four sub divisions.

(20 x 2 = 40 marks)