Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE473	ADVANCED COMPUTATIONAL TECHNIQUES AND OPTIMIZATION	3-0-0-3	2016

Prerequisite : CE306 Computer Programming and Computational Techniques

Course objectives:

- To introduce different numerical solutions and importance of optimization
- To impart ability to apply mathematics and optimizing techniques for finding solutions to real time problems.

Syllabus :

Introduction to numerical methods- errors in numerical methods-Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problemspower method. General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems -Formulation of objective function and constraints. Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Nonpolynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton - Cotes open quadrature- Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming. Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions-Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods.

Course Outcomes:

The students will be able to:

- i. Find different numerical solutions of complicated problems
- ii. Determine solutions of real time problems applying numerical methods in mathematics
- iii. Understand the importance of optimization and apply optimization techniques in real time problems

Text Books / References:

- 1. Grewal B.S. "Numerical Methods in Engineering and Science" Khanna Publishers.
- 2. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers" Mc Graw Hill 2006.
- 3. Smith G.D. "Numerical solutions for Differential Equations" Mc Graw Hill
- 4. Ketter and Prawel "Modern Methods for Engineering Computations" Mc Graw Hill
- 5. Rajasekharan S. "Numerical Methods in Science and Engineering"S Chand & company 2003.
- 6. Rajasekharan S. "Numerical Methods for Initial and Boundary value problems," Khanna publishers 1989.
- 7. Terrence .J.Akai "Applied Numerical Methods for Engineers", Wiley publishers 1994.
- 8. R.L. Fox, Optimisation methods in Engineering Design, Addison Wesely
- 9. S.S. Rao, Optimisation Theory and applications, ,Wiley Eastern.
- 10. Belegundu., Optimisation concepts and Applications Engineering,

11. Andrew B Templeman, Civil Engineering Systems					
COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Introduction to numerical methods- errors in numerical methods- Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problems- power method.	7	15		
Π	General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems - Formulation of objective function and constraints.	6	15		
FIRST INTERNAL EXAMINATION					
Ш	Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Non- polynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton – Cotes open quadrature	7	15		
IV	Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming	6	15		
SECOND INTERNAL EXAMINATION					
v	Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions- Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations	7	20		
VI	Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods	7	20		

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)