Course]	No. Course Name	L-T-P Credits	Year of I	ntroduction			
CE46	6 FINITE ELEMENT METHODS	3-0-0-3	2	2016			
Prerequisite : Nil							
Course Objectives							
• To provide a fundamental knowledge on FEM							
• To equip to solve basic Engineering problems using FEM							
Syllabus A A A A A A							
Introducti	on to FEM- Basics of 2D elasticity -Development	of shape functions f	for truss, bea	am and frame			
elements -The Direct Stiffness Method- Lagrangian and Hermitian interpolation functions - Isoparametric							
formulatio	formulation						
Expected Outcome							
• Students successfully completing this course are expected to implement FEM for solving basic							
engineering problems.							
Text Bool	۲S						
1. B	Bathe K J, <i>Finite Element Procedures in Engineering Analysis</i> , Prentice Hall, New Delhi., 1982						
2. C	ook R D, Malkus D S, and Plesha M E, Co	ncepts and Applica	tions of Fi	nite Element			
Analysis, John Wiley & Sons, Singapore., 1981							
3. K	rishnamoorthy C S, Finite Element Analysis- Th	neory and Programm	ning, Tata N	AcGraw Hill,			
N	ew Delhi., 1994						
Reference Books							
1. Chandrupatia T R and Belegundu A D, Introduction to Finite Elements in Engineering, Pearson Education New Delbi 1998							
2. Hutton D V, <i>Fundamentals of Finite Element Analysis</i> , Tata McGraw Hill Education Private Ltd,							
New Delhi., 2005							
3. Mukhopadhyay M and Abdul Hamid Sheikh, Matrix and Finite Element Analyses of Structures, Ane							
	books Pvt. Ltd., New Delhi, 2009	na Dasian Wheeler N	Jaw Delhi 1	008			
4. Kajasekharan S, <i>Finite Element Analysis in Engineering Design</i> , Wheeler, New Delhi, 1998 5. Reddy I N. An Introduction to FFM. McGraw Hill Book Co. New York, 1984							
6. Zienkiewicz O C and Taylor R W., Finite Element Method, Elsevier Butterworth-Heinemann, UK.,							
2005							
Course Plan							
Module	Contents		Hours	Sem. Max. Marks %			
	(2911)						
I	Introduction to FEM- out line of the pro-	cedure – Element					
	properties- polynomial form- shape function	form- equilibrium	7	15			
	and compatibility in the solution- converge	ence requirements.	,	15			
	Development of shape functions for truss elem	ents					
II	Basics of 2D elasticity - Strain displa	cement relations-					
	constitutive relations- Energy principles-Pri	nciples of virtual	7	15			
	work- Total potential energy- Rayleigh-Ritz 1	nethod- method of	1	13			
	weighted residuals. Gauss elimination - Solution	on of equations					

FIRST INTERNAL EXAM					
ш	The Direct Stiffness Method:- Structure stiffness equations – Properties of [K] – Solution of unknowns – Element stiffness equations – Assembly of elements - Static condensation. Displacement boundary conditions – Stress computation – Support reactions	8	15		
IV	Shape functions for C0 and C1 elements – Lagrangian and Hermitian interpolation functions for one dimensional elements Development of shape functions for beam, and frame elements	6	15		
SECOND INTERNAL EXAM					
V	Lagrangian interpolation functions for two and three dimensional elements constant strain triangle- Linear strain triangle- Bilinear plane rectangular elements- Consistent nodal loads- lumped loads- patch test- stress computation	7	20		
VI	Isoparametric formulation – Line elements- Plane bilinear element- Iso parametric formulation of Quadratic plane elements- Sub parametric elements and super parametric elements- Gauss quadrature- Plate and shell elements	7	20		
END SEMESTER EXAM					

QUESTION PAPER PATTERN (External Evaluation) :

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)