Course Code	Course Name	L-T-P- Credits	Ye	ar of duction			
CE403	STRUCTURL ANALYSIS - III	3-0-0-3	2	016			
Prerequisite :CE303 Structural Analysis - II							
Course	objectives:		_				
 To enable the students to have a comprehensive idea of matrix structural analysis with emphasis on the relative advantages of the flexibility method and the stiffness method To enable the students to visualize structural dynamics problems with a proper blend of structural analysis and vibration theory 							
Syllabus :							
Approximate Methods of Analysis of Multistoried Frames, Matrix analysis of structures, Flexibility method, Stiffness method, Introduction to direct stiffness method, Structural dynamics							
Expecte	d Outcomes:						
The stuc	ents will be able to						
	1. analyse structures using approximate method	ng flavibi	lity metho	d			
	ii. analyse trusses, continuous beams and rigid frames using flexibility method						
	iv. conceive Finite element procedures by direct stiffness i	nethod					
	v. use the basics of structural dynamics and analyse the re	sponse of	SDOF sy	stems			
Text Deelta							
1 G S Pandit and S P Gupta Structural analysis a Matrix approach McGraw Hill Education							
(India), 2e, 2008							
2. Gere	2. Gere, J.M. and William Weaver, Matrix Analysis of framed structures, CBS Publishers, 1990						
3. Ken	Kenneth M Leet, Chia Ming Uang, Anne M Gilbert, Fundamentals of structural analysis, Tata						
McC	raw Hill Pvt Ltd., 4e, 2010						
4. Red	ly C.S., Basic structural analysis, Tata McGraw Hill, third edi	tion, 3e, 2	2012				
1 Anil	K Chopra Dynamics of structures Pearson Education/Pren	tice Hall	India 5e	2016			
$\frac{1}{2}$ Clor	oh R W and Penzein I. Dynamics of structures. Tata McGra	w Hill 1	995	2010			
3. Mad	hujith Mukhopadhyay and Abdul Hamid Sheikh, Matrix and I	Finite Eler	ment Ana	lysis of			
Structures, Ane Books India, 2009							
4. Mario Paz, Structural Dynamics: Theory & Computation, 2e, CBS Publishers, 2004							
5. Rajasekharan. S. and Sankarasubramanian G., Computational structural Mechanics, PHI, 2009							
6. Wan	g C.K., Matrix method of structural analysis, International Te	xt book c	ompany, I	1970			
COURSE PLAN							
Modu le	Contents		Hours	Sem. Exam Marks %			
	Approximate Methods of Analysis of Multistoried Frames: A	nalysis					
_	for vertical loads-substitute frames-loading condition for ma	aximum	_				
I	hogging and sagging moments in beams and maximum l	bending	6 15				
	moment in columns- wind load analysis of multistoried fr	rames –					
	portar metrioù and cantilever metrioù 101 faterar 10au allarysis.	•					

II	Matrix analysis of structures: static and kinematic indeterminacy- force and displacement method of analysis-definition of flexibility and stiffness influence coefficients Concepts of physical approach	6	15			
FIRST INTERNAL EXAMINATION						
III	Flexibility method: flexibility matrices for truss and frame elements-load transformation matrix-development of total flexibility matrix of the structure-analysis of simple structures-plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15			
IV	Stiffness method: Development of stiffness matrices by physical approach-stiffness matrices for truss and frame elements- displacement transformation matrix-analysis of simple structures- plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15			
SECOND INTERNAL EXAMINATION						
V	Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co- ordinates from element co-ordinates- assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.	8	20			
VI	Structural dynamics-introduction-degrees of freedom-single degree of freedom subjected to harmonic load -linear systems- equation of motion, D'Alembert's principle-damping- free response of damped and undamped systems- logarithmic decrement- transient and steady state responses, Dynamic magnification factor – Vibration isolation –Concept of two degree of freedom systems (No derivation and numerical problems)	8	20			
END SEMESTER EXAMINATION						

QUESTION PAPER PATTERN (End semester examination)

Estd

11/1

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)