Course Code	Course Name	L-T-P- Credits	Year of Introduction			
CE401	DESIGN OF STEEL STRUCTURES	4-0-0-4	2016			
Prerequisite : CE202 Structural Analysis II						
Course objectives:						

- To introduce the limit state design of steel structural components subjected to bending, compression and tensile loads including the connections
- To enable design of structural components using timber

Syllabus:

Steel and steel structures – bolted and welded connections- tension members – compression members – beams – roof trusses – purlins – timber structures – columns- composite beams

Expected Outcomes:

The students will be able to

- i. design bolted and welded connections
- **ii.** design tension members and beams using the IS specifications
- iii. design columns under axial loads using IS specifications
- iv. design beams and plate girders
- v. assess loads on truss and design purlins
- vi. design structural components using timber.

Text Books:

- 1. L S Jayagopal, D Tensing., Design of steel structures, S Chand & Company, 2015
- 2. S K Duggal., Limit State design of steel structures, Tata McGraw Hill, 2010
- 3. Subramanian N, Design of steel Structures, Oxford University Press, 2011

References :

- 1. P. Dayaratnam., Design of Steel Structures, Wheeler Publishing, 2003
- 2. Punmia B. C., Jain A. K. and Jain A. K., Design of Steel Structures, Laxmi Publications (P) Ltd, 2017
- 3. Raghupathi, Steel Structures, Tata McGraw Hill, 2006
- 4. Ramchandra S and Virendra Gehlot, Design of Steel Structures Vol. II, Standard Book House, 2007
- 5. V L Shah & Veena Gore, Limit State Design of steel Structures, Structures Publications, 2009
- 6. William T Segui., Steel Design, Cenage Learning, 6e, 2017
- 7. IS 800 2007, Code of practice for Structural steel design, BIS

COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %		
I	Introduction to steel and steel structures, properties of steel, structural steel sections. Introduction to design: Design loads and load combinations, limit state design concepts. Connections bolted and welded (direct loads)	9	15		

Π	Tension members-Types of sections – net area- design of tension members- concept of shear lag-use of lug angle-connections in tension members	9	15		
	FIRST INTERNAL EXAMINATION				
III	Compression members- design of struts- solid and built up columns for axial loads design of lacings and battens-column bases- slab base – gusseted base	10	15		
IV	Design of beams- laterally restrained and unrestrained – simple and compound beams- plate girders subjected to uniformly distributed loads – design of stiffeners.	9	15		
SECOND INTERNAL EXAMINATION					
V	Design of roof trusses- types-design loads and load combinations- assessment of wind loads- design of purlins. Moment resistant/Eccentric connections (in plane and out of plane)	10	20		
VI	Design of timber structures: types of timber - classification - allowable stresses-design of beams-flexure, shear, bearing and deflection considerations-Design of columns. Design of composite beam sections with timber and steel.	9	20		
END SEMESTER EXAMINATION					

QUESTION PAPER PATTERN (End semester examination)

Estd.

Maximum Marks : 100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1. Each part should have at least one question from each module

2 .Each question can have a maximum of 4 subdivisions (a, b, c, d)