Course Co	de Course	Name	L-T-P- Credits	Yea	ar of duction			
CE373	ADVANCED M MATE	ECHANICS OF RIALS	3-0-0-3	20	016			
Prerequisite: CE201 Mechanics of Solids								
Course objectives:								
• To review and make more useful the methods and results presented in the first course on								
• To s	how the limitations of the ordi	nary formulas of Strength	of Materials, t	o consider	• the			
cone	conditions under which these limitations are significant and to extend the subject to include a							
vari	ety of important topics more co	mplex than those usually	involved in a f	irst course				
Syllabus: Stress, Principal stresses, Strain energy, Failure & Failure criteria, Elements of theory of								
Expected (name and compationity, beams	s on elastic foundation, Ct	irved beams, 1	Orsion				
The student	s will be able to							
i. app	y the concepts of stress, strain	and strain energy						
ii. use	use failure criteria and fracture mechanics and buckling in analysis							
iii. app	apply plane state of stress and strains to problems							
iv. use	strain and compatibility conditi	ons in analysis						
v. use	he concept of beams on elastic	foundations and curved b	eams					
vi. use	the principles of torsion for ana	llysis						
Text Books								
I. R.D Intl.	Intl. Inc. 1999							
2. Srin	• Srinath L.S, Advanced Mechanics of Solids, Tata McGraw Hill, 3e, 2009							
References :								
1. A.P.	1. A.P. Boresi and O.M.Sidebottom, Advanced Mechanics of Materials, 4 th edition, John Wiley &							
2 Edu	Sons, inc. 1985 ESLU 2. Edward Taudik Analysis of structures on Electic Foundations Conserve Learning IDec							
2. Edward Isudik, Analysis of structures on Elastic Foundations, Cengage Learning, J.Ross Publishing 2012								
3. S P Timoschenko, Strength of Materials Vol II .CBS Publishers, 2002								
4. Shames, E.H., Mechanics of Deformable solids, Prentice Hall Inc., 1964								
5. Timoshenko S.P and Goodier J.N, Theory of elasticity, McGraw Hill, 3e, 1970								
	(COURSE PLAN						
					Sem.			
Module	C	Contents		Hours	Marks			
	Stress, Principal stresses, Strair	energy: Stress at a point	– stress on an					
	rbitrarily oriented plane-stress	transformations- strain th	eory-principal					
Ι	tresses & strains (2d & 3d)-	Generalized Hooke's law	-Equations of	6 15				
	nermo-elasticity for isotropic	materials-strain energy de	ensity- stress					

II	Failure & Failure criteria: Modes of failure –yield failure criteria- introduction to fracture mechanics-cracks & brittle fracture-fatigue-elastic and inelastic buckling.	6	15				
FIRST INTERNAL EXAMINATION							
ш	Elements of theory of elasticity : Transformation of stress and strains: Plane state of stress - equations of transformation - principal stresses. Plane state of strain – analogy between stress and strain transformation - Mohr's circles of stress and strain – strain rosettes.	6	15				
IV	Displacements-strains and compatibility-equilibrium equations and boundary conditions- stress field solutions for plane stress problems- polynomial solutions in Cartesian coordinates-displacements calculated from stresses-plane stress problems in polar coordinates.	6	15				
SECOND INTERNAL EXAMINATION							
V	Beams on elastic foundation: General theory-infinite beam subjected to concentrated load- beams with uniformly distributed loads- short beams Curved Beams: Winkler Bach formula-Equivalent area method-Circumferential stresses in Curved beams with I and T sections- Closed ring with circumferential load and uniform loads -deflections of sharply curved beams.	9	20				
VI	Torsion :Torsion of a cylindrical bar of circular cross section- St. Venant's semi inverse method-stress function approach-elliptical, equilateral triangle & narrow rectangular cross sections - Prandtl's membrane analogy-Hollow thin wall torsion members-multiply connected cross sections- thin wall torsion members with restrained ends.	9	20				

Estd.

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks :100

Exam Duration: 3 Hrs

2014

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note: 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

