Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE372	ENGINEERING HYDROLOGY	3-0-0-3	2016

Pre-requisite : CE309 : Water Resources Engineering

Course objectives:

- To have a good understanding of all the components of hydrologic cycle
- To understand the mechanics of rainfall, its spatial and temporal distribution.
- To understand the fitting of probability distribution and statistical analysis of rainfall and Runoff.

Syllabus :

Basic concept of Hydrology and Hydrologic cycle - Test for consistency of rainfall records - Analysis of rainfall data - Hydrologic abstractions-infiltration-Evapotranspiration - methods of estimation-catchment characteristic-stream gauging - stage-discharge curve - its extension and adjustment. Computation of runoff- Rainfall- runoff correlation using linear regression techniques- Partial differential equation governing unsteady groundwater flow- Evaluation of aquifer parameters- Well flow near aquifer boundaries - Method of images - surface investigation of groundwater- Graphical representation of hydrochemical data- Pollution of ground water, sources, Seawater intrusion, Artificial recharge of groundwater- Design flood –Estimation of design flood- Flood frequency studies-Gumbel's method- Flood routing through reservoirs and Channel routing- Flood control methods, Flood forecasting and warning.

Expected Outcomes:

The students will be able to

- 1. understand the procedure, applicability and limitations of various methods of geotechnical investigation;
- 2. make proper engineering judgments and take appropriate decisions related to geotechnical investigations.

Text Books:

- 1. Deodhar.M.J., Elementary Engineering Hydrology, Pearson, 2009
- 2. Ojha, C.S.P, R. Berndtsson, P.Bhunya, Engineering Hydrology, Oxford University Press, 2015.
- 3. Reghunath. H M, Hydrology, New Age International Publications, 1987.
- 4. Subramanya. K, Engineering Hydrology, Tata McGraw Hill, 1984

References:

- 1. Garg S. K. Hydrology and Water Resources Engineering, Khanna Publishers, 2005
- 2. Ghanshyam Das, Hydrology and soil conservation Engineering, Prentice-hall of India, 2004.
- 3. Jayarami Reddy P, A Text Book of Hydrology, Laxmi Publications, 2005.
- 4. Maidment D.R., Hand book of Hydrology, Mc Graw Hill, 1993
- 5. Todd D. K., Ground Water Hydrology, Wiley, 2005
- 6. Ven Te Chow, David R Maidment, L. W. Mays, Applied Hydrology, McGraw Hill, 1988
- 7. Warren Viessman, Gary L Lewis, Introduction to Hydrology, Pearson, 2015.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	

			r		
I	Basic concept of Hydrology and Hydrologic cycle -Test for consistency of rainfall records - Analysis of rainfall data - correlation between intensity and duration – intensity, duration and frequency - depth area duration (DAD) curve. Hydrologic abstractions- infiltration Green Ampt method-Evapotranspiration – different methods - Blaney Criddle method - penman method.	7	15		
II	Catchment characteristics - classification of streams - stream pattern-stream order - stream gauging - rating of current meter - Extension of stage discharge curve - Adjustment of stage discharge curve-selection of site for stream gauging stations.	6	15		
	FIRST INTERNAL EXAMINATION	r			
ш	Runoff - Computation of runoff– Hydrograph analysis-Rational method S-hydrograph - unit hydrograph from complex storm - synthetic unit hydrograph- Instantaneous unit hydrograph (Brief description only) – linear reservoir model.	7	15		
IV	Partial differential equation governing unsteady groundwater flow- Evaluation of aquifer parameters - Theis method -Jacob's approximation method. Well flow near aquifer boundaries - Method of images - surface investigation of groundwater - Electrical resistivity method. Graphical representation of hydrochemical data - Pollution of groundwater, sources. Seawater intrusion- Ghyben-Herzberg relationship -Method of control of seawater intrusion- Artificial recharge of groundwater.	6	15		
SECOND INTERNAL EXAMINATION					
v	Rainfall- runoff correlation using linear regression and multiple linear regression analysis. Design flood and their Estimation - Different methods - Flood frequency studies -Gumbel's method.	8	20		
VI	Flood routing through reservoirs - ISD method- Modified Pulse method. Flood routing through channels by Muskingum method. Flood control methods - Flood forecasting and warning (Brief descriptions only)	8	20		
END SEMESTED EXAMINATION					

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks :100

2014

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)