Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE368	PRESTRESSED CONCRETE	3-0-0-3	2016

Pre-requisite: CE201Mechanics of Solids

Course objectives:

• To make students familiar with the concepts and design of typical pre-stressed concrete structural elements and to have a knowledge of the codal provisions

Syllabus :

Basic concept and principles of pre-stressed concrete systems- analysis for flexure- loss of pre-stress, Design philosophy and design for flexure, codal provisions, Shear and torsional behavior – analysis and design - calculation of deflection (short & long term), Anchorage Zone stresses in post tensioned members, Prestressed concrete poles and sleepers, Partial pre-stressing, composite beams – analysis and design, Statically indeterminate structures

Expected Outcomes:

The students will be able to

- i. analyse prestressed concrete members
- ii. design prestressed concrete members using codal provisions
- iii. design for shear and torsion of prestressed concrete members
- iv. design end blocks and provide detailing of reinforcements
- v. design composite members and other applications
- vi. design continuous members

Text Books :

- 1. G S Pandit & S P Gupta, "Prestressed Concrete", CBS Publishers, 2014
- 2. Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi 1998
- 3. Rajagopalan, N, "Prestressed Concrete", Alpha Science, 2002

References:

- 1. Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995
- 2. Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH publishing Co. Pvt. Ltd., 1997
- 3. Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi, 1990
- 4. IS 1343 1998 ISCode Bureau of Indian Standards

COURSE PLAN					
Module	Contents	Hours	Sem. Exam Marks %		
I	Review- Basic concept and principles of pre-stressed concrete, materials, prestressing systems – Analysis of prestress and bending stresses loss of pre-stress Stresses at transfer and service loads.	6	15		

II	Limit state design criteria: Inadequacy of elastic and ultimate load method, criteria for limit states, strength and serviceability. Design of sections for flexure codal provisions- ultimate strength in flexure	6	15			
FIRST INTERNAL EXAMINATION						
III	Shear and torsional resistance: design of shear reinforcement, design of reinforcement for torsion, shear and bending.	7	15			
IV	Deflections of prestressed concrete members: Importance, factors, short term and long term deflection. Codal provisions	7	15			
SECOND INTERNAL EXAMINATION						
V	Anchorage Zone stresses in post tensioned members: Stress distribution in end block, anchorage zone reinforcement. Prestressed concrete poles and sleepers: Design of sections for compression and bending Partial pre-stressing- Definitions, principles and design approaches and applications		20			
VI	Composite beams –Analysis and design – Ultimate strength – applications, Elementary idea of composite construction for tee beams in bridges. Statically Indeterminate structures: advantages of continuous member(Concepts and steps for analysis)-	8	20			
END SEMESTER EXAMINATION						

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each
- **Note** : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)