Course	Course Name	L-T-P- Credite	Ye Intro	ear of				
CE367	WATER CONVEYANCE SYSTEMS	3-0-0-3	2	016				
Pre requisite · CE206 · Fluid Mechanics - II								
Course objectives								
	o understand the mechanics of flow through open channel.							
 To develop the ability to analyse the flow in a channel in order to design canals and canal. 								
str	uctures.		ii cuitais c	ina canan				
• To	enable identification of the components of pipe networks	system	V. 1					
 To familiarize with analysis of water distribution systems 								
• To familiarize with analysis of water distribution systems.								
Syllabus :								
Open char	Open channel flow- Pressure distribution in curvilinear flows. Channel transitions with hump or							
change in width. Uniform flow-composite sections, Hydraulic exponents N and M Design of								
channels for uniform flow-Non erodible channel-Minimum permissible velocity-channel slopes-								
best hydraulic section. Erodible channels which scour but do not silt Gradually varied flow								
computations. Unsteady flow-Gradually and Rapidly varied unsteady flow.								
Head loss due to friction in pipes, Friction factor for smooth and rough pipes, Reservoirs,								
distributio	n network using Herdy cross method	lationships	Anarysis	of water				
Exported	Outcomest							
Expected	The students will be able to predict the behaviour	of flow in	n a chann	el under				
1. The students will be able to predict the benaviour of flow in a channel under different conditions								
<i>ii</i> The students, will understand the underlying principles and the design peremeters								
l	involved in analysis of water distribution system and	become c	anable of a	analysing				
	a typical pipe network.			anarysning				
Text Books :								
1. Bh	ave P. R. and R. Gupta, Analysis of Flow in Water Distributio	n Networks	. Narosa F	ublishing				
House, 2013								
2. Rajesh Srivastava, Flow through Open Channels, Oxford University Press, 2007.								
3. Subramanya.K. Flow in Open Channels, Tata McGraw Hill Publishing Co. 2009								
References :								
1. Ch	ow V. T., O <mark>pen Channel Hyd</mark> raulics, McGraw Hill Boo <mark>k Co. N</mark>	ew York, 1	990.					
2. Hanif Chaudhry. M., Open Channel Flow, Springer, 2008.								
3. Hubert Chanson, Hydraulics of Open channel flow, Elsevier Butterworth-Heinemann, 2004.								
4. Lary W Mays, Water distribution system Hand book, Mc Graw Hill, 2000.								
5. WOULP. N. and S. M. Sein, Hydraulics & Fiuld Mechanics, S.B.H Publishers, New Delni, 2002 6. Richard H French, Open Chanel Hydraulics, Mc Graw Hill, 2000								
7. Walksi T M. Analysis of water distribution System. Van Nostrand Reinheld G. New York 1984								
COURSE PLAN								
				Sem.				
M - J - J	Contonto		House	Exam				
woodle	Contents		nours	Marks				
				%				

I	Open channel flow- Pressure distribution in curvilinear flows. Application of specific energy principle to channel transitions with hump or change in width. Uniform flow-composite sections, Equivalent roughness, Hydraulic exponents N and M	6	15			
Ш	Design of channels for uniform flow-Non erodible channel- Minimum permissible velocity-channel slopes-best hydraulic section. Erodible channels which scour but do not silt-Methods of approach-Method of permissible velocity-Tractive force – Method of tractive force-stable hydraulic section.	6	15			
FIRST INTERNAL EXAMINATION						
III	Gradually Varied flow computations- Direct integration method, standard step method, Unsteady flow-Gradually varied unsteady flow, Rapidly varied unsteady flow channels- Positive surges, Negative surges.(No numerical problem from negative surges)	7	15			
IV	Head loss due to friction in pipes-Nikuradse experiment with artificially roughened pipe, Moody diagram, Friction coefficient for laminar and turbulent flows, reduction of carrying capacity with age. Hazen William's formula. Reservoirs-Impounding reservoir, Service and Balancing reservoir. Two reservoir system, Three Reservoir system. Pumps- system head discharge curve and pump head discharge curve. Special valves-Check valve, Pressure reducing valve- modes of operation(No numerical problem with pressure reducing valve)	6	15			
SECOND INTERNAL EXAMINATION						
V	Pipe Network types and parameter interrelationships. Rules for solvability of pipe networks.Formulation of equations-Basic unknown parameter, Pipe discharge equations, Nodal Head equations, Pipe discharge correction equations, Nodal Head correction equations		20			
VI	Analysis of water distribution network- Single and multisource networks with known pipe resistances- Hardy cross method- Method of balancing head, Method of balancing flow.	9	20			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)