Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE203	FLUID MECHANICS - I	3-1-0-4	2016

Pre requisite : Nil

Course Objectives

- 1. To understand the basic properties of the fluid, fluid statics, kinematics, and fluid dynamics so as to analyse and appreciate the complexities involved in solving the fluid flow problems.
- 2. To give an introduction to the fundamentals of fluid flow and its behavior so as to equip the students to learn related subjects and their applications in the higher semesters.
- 3. To develop the skill for applying the fluid statics, kinematics and dynamics of fluid flow concepts for solving civil engineering problems.

Syllabus

Fluid Statics, Fluid pressure, Buoyancy and floatation, Fluid Kinematics, Dynamics of fluid flow, Flow through orifice and notches, Flow through pipes, Boundary layer, Drag and lift on Immersed bodies

Course Outcomes:

- 1. Students will be able to get a basic knowledge of fluids in static, kinematic and dynamic equilibrium, so as to solve real life problems in fluid mechanics.
- 2. Students will gain the knowledge of the applicability of physical laws in addressing problems in hydraulics.

Text Books

- 1. Modi P. N. and S. M. Seth, Hydraulics & Fluid Mechanics, S.B.H Publishers, New Delhi, 2002.
- 2. Subramanya K., Theory and Applications of Fluid Mechanics, Tata McGraw-Hill, 1993.

References

- 1. Streeter.V.L. Fluid Mechanics, Mc Graw Hill Publishers.
- 2. Bruce R Munson, Donald F Young . Fundamentals of Fluid Mechanics, John Wiley & sons, 2011.
- 3. Jain A. K., Fluid Mechanics, Khanna Publishers, Delhi, 1996.
- 4. Joseph Katz, Introductory Fluid Mechanics, Cambridge University Press, 2015
- 5. Arora.K.R. Fluid Mechanics, Hydraulics and Hydraulic Machines, Standard Publishers, 2005.
- 6. Narasimhan S., A First Course in Fluid Mechanics, University Press (India) Pvt. Ltd., 2006.
- 7. Frank.M.White, Fluid Mechanics, Mc Graw Hill, 2013.
- 8. Mohanty.A.K. Fluid Mechanics, Prentice Hall, New Delhi, 2011
- 9. Narayana Pillai, N. Principles of Fluid Mechanics and Fluid Machines, University Press, 2011.
- 10. Kumar.D.N. Fluid Mechanics and Fluid power Engineering, S.K.Kataria & sons, 2013.

COURSE PLAN						
Module	Contents	Hours	Sem. Exam Marks %			
Ι	Fluid properties - density – specific gravity - surface tension and capillarity - vapour pressure - viscosity and compressibility - Classification of Fluids (No questions to be asked) . Fluid statics: Fluid pressure, variation of pressure in a fluid, measurement of pressure using manometers- simple manometers, differential manometers, Pressure head. Forces on immersed plane and curved surfaces. Pressure distribution diagram for vertical surfaces, Practical application of total pressure (spillway gates). Buoyancy and Floatation: Buoyant force, stability of floating and submerged bodies, metacentre and metacentric height, Analytical and experimental determination of metacentric height	LAN IG8A	M L 15			
II	Kinematics of fluid flow: Methods of describing fluid motion, Lagrangian and Eulerian methods, Types of fluid flow: steady and unsteady flow, uniform and non-uniform flow, one, two and three dimensional flow, laminar and turbulent flow, rotational and irrotational flow. Types of flow lines: stream line, path line, streak lines, conservation of mass, equation of continuity in one, two and three dimensions, (Derivation in Cartesian co-ordinate system only) Velocity & Acceleration of fluid particle, convective and local acceleration, Deformation of fluid elements: circulation and vorticity, velocity potential, stream function, equipotential lines, flow net, uses of flow net; Vortex motion, free and forced vortex (no problems).	8	15			
	FIRST INTERNAL EXAMINATION	ON				
III	Dynamic of fluid flow: Euler's equation of motion and integration of Euler's equation of motion along a streamline. Bernoulli's Equation, Energy correction factors, Applications of Bernoulli's equation : Pitot tube, Venturimeter and orifice meter. Momentum Principle- Steady flow momentum equation- Momentum correction factor, Force computation on a pipe bend	8	15			
IV	Flow through orifices: Different types of orifices, Flow over a sharp edged orifice, Hydraulic coefficients – Experimental determination of these	8	15			

	coefficients, flow through large rectangular orifice, Flow through submerged orifices, flow under variable heads, time of emptying. Flow over weirs: flow over rectangular, triangular and trapezoidal sharp crested weir, Cipolletti weir, Broad crested weir, Submerged weirs, Proportional weir.					
SECOND INTERNAL EXAMINATION						
V	Flow through pipes: Viscous flow - Shear stress, pressure gradient relationship - laminar flow between parallel plates - Laminar flow through circular tubes (Hagen Poiseulle's Eqn) - Hydraulic and energy gradient - flow through pipes - Darcy -Weisbach's equation - pipe roughness -friction factor- Moody's diagram- Major and minor losses of flow in pipes - Pipes in series and in parallel.	LAN C²A Y	ML	20		
VI	Boundary layer theory-no slip condition, boundary layer thickness, boundary layer growth over long thin plate, laminar, turbulent boundary layer, laminar sub layer, Momentum integral equation of boundary layer (no derivation), Blasius boundary layer equations for laminar and turbulent boundary layer. Drag and lift on Immersed bodies-Pressure drag and friction drag, profile drag, Drag and lift co-efficient- computation of drag on a flat plate. Separation of boundary layer and control.	12		20		
END SEMESTER EXAMINATION						

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks: 100

Exam Duration: 3 Hrs

The question paper shall have three parts.

Part A - Module I & II : Answer 2 questions out of 3 questions (15 marks each)

Part B - Module III & IV: Answer 2 questions out of 3 questions (15 marks each)

Part C - Module V & VI: Answer 2 questions out of 3 questions (20 marks each)

Note: 1.Each part should uniformly cover the two modules in that part.

2. Each question can have a maximum of 4 subdivisions (a,b,c,d), if needed.