Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE309	WATER RESOURCES ENGINEERING	3-0-0-3	2016

Pre-requisite : NIL

Course objectives

- To impart knowledge regarding the availability of water on hydrosphere, its distribution and quantification
- To convey the knowledge on the scientific methods for computing irrigation water requirements
- To communicate fundamental knowledge on reservoir engineering and river engineering

Syllabus

Hydrologic cycle, Precipitation, Infiltration and Evaporation-measurement and data analysis. Runoff-components and computation, Hydrograph, Unit Hydrograph and S-Hydrograph. Irrigation types and methods-Soil water plant relationships, Frequency of irrigation, Computation of crop water requirement. Stream flow measurement -Stage-discharge curve. Meandering of rivers, river training works. Surface water systems: diversion and storage systems, reservoir - estimation of storage capacity and yield of reservoirs - reservoir sedimentation -useful life of reservoir. Groundwater - Aquifer types and properties - Steady radial flow into a well. Estimation of yield of an open well.

Expected Outcome

After successful completion of this course, the students will be able to :

- i. Describe the hydrologic cycle and estimate the different components
- ii. Determine crop water requirements for design of irrigation systems
- iii. Compute the yield of aquifers and wells.
- iv. Know the features of various river training works
- v. Estimate the storage capacity of reservoirs and their useful life.

Text Books:

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Garg S.K, Irrigation Engineering and Hydraulic Structures Khanna Publishers New Delhi 2006.
- 3. Modi. P. N. Irrigation, Water Resources and Water Power Engineering, S.B.H Publishers and Distributors New Delhi 2009.
- 4. Punmia B.C. Ashok K Jain, Arun K Jain, B. B. L Pande, Irrigation and Water Power Engineering, Laxmi Publications (P) Ltd. 2010.

References:

- 1. Asawa. G.L. Irrigation and Water Resources Engineering, New Age International, 2000
- 2. Ojha.C.S.P., R.Berndtsson, P. Bhunya, Engineering Hydrology, Oxford university Press, 2015.
- 3. Patra. K.C., Hydrology and Water Resources Engineering, CRC Press, 2010.
- 4. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures, S.K. Kataria & Sons, 2013.
- 5. Subramanya. K., Engineering Hydrology, Tata Mc Graw Hill, 2011
- 6. Todd D. K., Ground Water Hydrology, Wiley, 2005.
- 7. Ven Te Chow, David R Maidment, L.W Mays., Applied Hydrology, McGraw Hill, 1988
- 8. Warren Viessman, G.L. Lewis, Introduction to Hydrology, Pearson Education, 2003.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Hydrologic cycle-precipitation-mechanism, types and forms. Measurement of rainfall using rain gauges-optimum number of rain gauges. Estimation of missing precipitation. Representation of rainfall data-mass curve and hyetograph. Computation of mean precipitation over a catchment. Design rainfall - probable maximum rainfall. Infiltration-measurement by double ring infiltrometer. Horton's model. Evaporation-measurement by IMD land pan, control of evaporation.	8	15	
п	Runoff-components of runoff-methods of estimation of runoff- infiltration indices, Hydrograph analysis-Hydrograph from isolated storm-Base flow separation. Unit hydrograph –uses. Assumptions and limitations of unit hydrograph theory. Computation of storm/flood hydrograph of different duration by method of superposition and by development of S– Hydrograph.	8	15	
FIRST INTERNAL EXAMINATION				
III	Irrigation– Necessity, Benefits and ill effects. Types: flow and lift irrigation - perennial and inundation irrigation. Methods: flooding, furrow, sprinkler and drip irrigation (concepts only, no design aspects/problems), Soil water plant relationships, soil moisture constants, Computation of crop water requirement: depth and frequency of Irrigation, Duty and delta, relationship, variation of duty, factors. Computation of design discharge of conveyance channels, Irrigation efficiencies. Consumptive use of water: concept of Evapotranspiration. (No detailed discussion on estimation procedures) Stream flow measurement: methods, Estimation of stream flow by	6	15	
IV	area velocity method only, Stage discharge curve. Meandering of rivers, River training – objectives and classification, description of river training works.	6	15	
	SECOND INTERNAL EXAMINATION	1		
V	Surface Water system: diversion and storage systems, necessity. River flow: Flow duration Curve, Firm yield. Reservoirs-types of reservoirs, zones of storage reservoir, reservoir planning-storage capacity and yield of reservoirs-analytical method and mass curve method. Reservoir sedimentation: trap efficiency, methods for control. Computation of useful life of reservoir.	7	20	
VI	Ground water : vertical distribution of groundwater, classification of saturated formation, water table, Aquifer properties : Porosity, Specific yield, specific retention, Types of aquifers. Darcy's law, co-efficient of permeability, Transmissibility. Wells- Steady radial flow into a fully penetrating well in Confined and Unconfined aquifers. Estimation of yield of an open well, pumping and recuperation tests. Tube wells – types. END SEMESTER EXAMINATION	7	20	

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2 Each question can have a maximum of 4 subdivisions (a, b, c, d)

