Course	Course Nome	L-T-P-	P- Year of	
Code	Course Name	Credits	Introduction	
CE302	DESIGN OF HYDRAULIC STRUCTURES	4-0-0-4	2016	

Prerequisite : CE309 Water Resources Engineering

Course objectives:

- To impart knowledge regarding the design of the various minor irrigation structures
- To convey the knowledge on the causes of failure, design criteria and stability analysis of different types of dams

Syllabus :

Diversion head works - layout and functions of components. Causes of failure of weirs on permeable soils, Bligh's theory and Khosla's theory. Irrigation canals- Design of unlined canals through alluvial soils-Kennedy's theory and Lacey's theory. Minor irrigation structures- Cross drainage works, Canal Regulation works : Falls and Regulators, Design of Hydraulic Structures: Aqueduct, siphon aqueduct, Canal falls-notch type, well type, Sarda type, and Cross regulator. Dams-Types, Gravity dam - forces acting - stability analysis and modes of failure - theoretical and practical profiles- Functions of shafts, galleries, keys and water stops. Arch dams-types, Thin cylinder theory. Earth dams-types, causes of failure and design criteria. Spillways-Types. Ogee type spillway-profile.

Course Outcomes:

The students will be able to

- i. Perform the stability analysis of gravity dams
- ii. Explain the causes of failure of different types of dams and their design criteria
- iii. Design minor irrigation structures such as regulators, cross drainage works and canal falls

Text Books :

- 1. Garg S.K, Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 2006.
- 2. Modi. P. N., Irrigation Water Resources and Water Power Engineering, Standard Book House, 2009.
- **3.** Punmia B.C. Ashok K Jain, Arun K Jain, B. B. L Pande, Irrigation and Water Power Engineering, Laxmi Publications (P) Ltd. 2010.

References:

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, 2010.
- 2. Asawa. G.L. Irrigation and Water Resources Engineering, New Age International, 2000
- 3. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures, S.K. Kataria & Sons, 2013
- 4. Sathyanarayana M. C. Water Resources Engineering-Principles and Practice, New Age International Publishers. 2009
- 5. Varshney, R.S. Theory & Design of Irrigation Structures Vol III, Nem Chand & Bros., Roorkee.

COUDSE DI AN

COURSE PLAN						
Module	Contents	Hours	Sem. Exam Marks %			
I	Diversion head works- layout and functions of components, Weir and barrage- Causes of failure of weirs on permeable soils - Bligh's theory. Design of vertical drop weir. Khosla's theory of independent variables- Khosla's corrections-Use of Khosla's charts.	6	15			

II	 Irrigation canals, canal alignment- cross section of unlined canals- Design of canals through alluvial soils-Kennedy's theory and Lacey's theory. Cross drainage works-Types, selection of suitable type, Type of aqueducts. Regulation Works - Canal falls-necessity, classification. Canal regulators- Regulator cum road bridge- Head regulators and cross regulators. 		8	15			
FIRST INTERNAL EXAMINATION							
Ш	 Design and Drawing of the following hydraulic structures: 1. Aqueduct (Type III) 2. Syphon Aqueduct (Type III) 3. Canal Fall (Trapezoidal Notch type) 4. Siphon Well Drop 5. Sarda Type Fall (High Discharge only) 6. Cross Regulator (Using Khoslas Theory) 	L	30	50			
	SECOND INTERNAL EXAMINATION						
IV	Dams-Types, Gravity dam – selection of site- forces acting - stability analysis and modes of failure – Principal and shear stresses- Problems - Elementary profile –limiting height of gravity dams- high and low dams- Practical profiles, Functions of various components shafts, keys, water stops, and different types of gallery, Grouting. Instrumentation in dams (Concept only).		6	10			
V	Arch dams-types, methods for design (list only)-Thin cylinder theory. Earth dams-types, causes for failure and design criteria. Spillways-Types. Effective length of spillway- Ogee type spillway- profile. Energy dissipation below spillways - Stilling basins- Indian standard Type I and Type II (design not necessary).		6	10			

Note: In Internal Evaluation the marks for assignment shall be awarded based on the submission of drawings.

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks : 100

Exam Duration: 4 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III : One question out of 2 questions carrying 50 marks ; with weightage for design as 25 marks and sketching of two views of design specified in

question : 25 marks

Part C - Module IV & V : 2 questions out of 3 questions carrying 10 marks each.