Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE301	DESIGN OF CONCRETE STRUCTURES I	3-1-0-4	2016

Pre-requisites: CE202 Structural Analysis I

Course objectives:

- To provide the students with the knowledge of the behavior of reinforced concrete structural elements in flexure, shear, compression and torsion
- To enable them to design essential elements such as beams, columns, slabs staircases and footings under various loads.

Syllabus:

Introduction- Limit State method of design- Analysis of singly reinforced rectangular beams- shear strength of RC beam-design of shear reinforcement-bond and development length- curtailment of reinforcement-design of singly reinforced beams-analysis and design of doubly reinforced beams – simply supported , cantilever- analysis of singly reinforced T-beams -design for torsion-design of one-way slab- cantilever slab- continuous slab (detailing only)- two way slabs- design using code coefficients- Limit State of Serviceability-deflection-cracking -Stair cases- design & detailing-Columns-effective length-design of axially loaded short columns with rectangular ties and helical reinforcement.

Expected Outcomes:

The students will be able to

- i. Apply the fundamental concepts of limit state method
- ii. Use IS code of practice for the design of concrete elements
- iii. Understand the structural behavior of reinforced concrete elements in bending, shear, compression and torsion.
- iv. Design beams, slab, stairs, columns and draw the reinforcement details.
- v. Analyze and design for deflection and crack control of reinforced concrete members.

Text Books / References:

- 1. Pillai S.U & Menon D Reinforced Concrete Design, Tata McGraw Hill Publishing Co., 2005
- 2. Punmia, B. C, Jain A.K and, Jain A.K ,RCC Designs, Laxmi Publications Ltd., 10e, 2015
- 3. Varghese P.C, Limit State Design of Reinforced Concrete, Prentice Hall of India Pvt Ltd,, 2008
- 4. Relevant IS codes (I.S 456, I.S 875, SP 34)

COURSE PLAN					
Module	Contents		Sem. Exam Marks %		
Ι	Introduction- Plain and Reinforced concrete- Properties of concrete and reinforcing steel-Objectives of design-Different design philosophies- Working Stress and Limit State methods-Limit State	9	15		

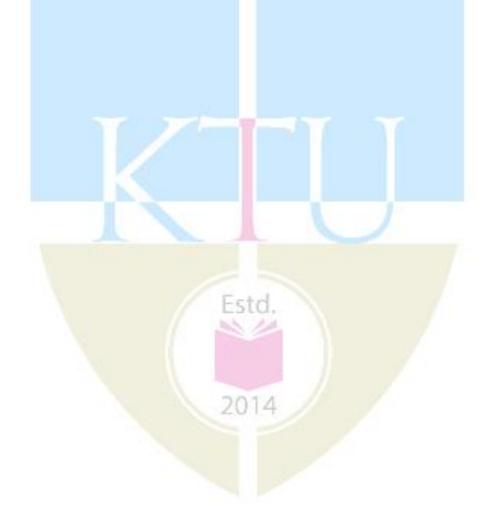
	method of design-Introduction to BIS code- Types of limit states-			
	characteristic and design values-partial safety factors-types of loads			
	and their factors.			
	Limit State of Collapse in Bending-assumptions-stress-strain			
	relationship of steel and concrete- analysis of singly reinforced			
	rectangular beams-balanced-under reinforced-over reinforced			
	sections-moment of resistance codal provisions			
П	Limit state of collapse in shear and bond- shear stresses in beams-	1		
	types of reinforcement-shear strength of RC beam-IS code	11		
	recommendations for shear design-design of shear reinforcement-	1		15
	examples	L	9	15
	Bond and development length - anchorage for reinforcement bars -			
	code recommendations regarding curtailment of reinforcement			
	FIRST INTERNAL EXAMINATION			
	Design of Singly Reinforced Beams- basic rules for design- design			
	example of simply supported beam- design of cantilever beam-			
III	detailing Analysis and design of doubly reinforced beams -		9	15
	detailing, T-beams- terminology- analysis of T beams- examples -			
	Design for torsion-IS code approach- examples.			
IV	Design of slabs- introduction- one-way and two-way action of slabs			
	- load distribution in a slab- IS recommendations for design of	9	0	15
1 V	slabs- design of one-way slab- cantilever slab- numerical problems		15	
	 – concepts of detailing of continuous slab –code coefficients. 			
	SECOND INTERNAL EXAMINATION			
	Two- way slabs- simply supported and restrained slabs – design			
	using IS Code coefficients Reinforcement detailing			
V	Limit State of Serviceability- limit state of deflection- short term		10	20
	and long term deflection-IS code recommendations- limit state of			
	cracking- estimation of crack width- simple numerical examples			
VI	Stair cases- Types-proportioning-loads- distribution of loads – codal			
	provisions - design and detailing of dog legged stair- Concepts of			
	tread-riser type stairs (detailing only)			
	Columns- introduction –classification- effective length- short	10	20	
	column - long column - reinforcement-IS specifications regarding	10		
	columns- limit state of collapse: compression -design of axially			
	loaded short columns-design examples with rectangular ties and			
	helical reinforcement			
	END SEMESTER EXAMINATION			

Note

All designs shall be done as per current IS specifications
 Special importance shall be given to detailing in designs
 During tutorial hours detailing practice shall be done.

4. SI units shall be followed.

5. IS 456-2000 shall be permitted for the End Semester Examination


QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

