B G	800

(Pages: 2)

Reg. 1	No
--------	----

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Eighth Semester

Branch: Civil Engineering

FINITE ELEMENT ANALYSIS (C)

(Old Scheme-Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time : Three Hours

Maximum : 100 Marks

Answer **all** questions. Each full question carries 20 marks.

- (a) For the problem of axial vibration of a tapering rod fixed at one end and free at the other, derive the governing differential equation.
 - (b) Briefly explain the basic steps involved in finite element analysis using a suitable example.

Or

- II. (a) Explain the Gauss elimination procedure with an example.
 - (b) Explain the concept of frontal solvers with an example.
- III. (a) Explain the formulation of finite element equations using Rayleigh-Ritz approach.
 - (b) Explain the principle of virtual work in detail.

O

- IV. (a) Discuss the roll of energy principles in finite element formulations.
 - (b) Explain the principle of virtual displacements.
- V. (a) Get the explicit shape functions for a rectangular element with corners (0,0), (3,0), (3,2), (0,2), using Lagrange formulae.
 - (b) Explain Cn continuity with examples.

Or

- VI. (a) List and explain the essential properties of shape functions for monotonic convergence.
 - (b) Explain: (i) Constant Strain Triangular element; and (ii) Area co-ordinates.
- VII. Evaluate the following integrals using Gauss quadrature:—

(a)
$$I = \int_{-2}^{2} \frac{dx}{1+x^2}$$

(b)
$$I = \int_{-1-1}^{1} \int_{-1-1}^{1} x \sin(x + y^2) dxdy$$
.

- VIII. (a) Derive the shape functions for a 4-noded bar element using Lagrangian interpolation.
 - (b) Derive the shape functions for a 2-dimensional beam element and show the variation of shape functions graphically.
 - IX. (a) Explain Mindlin's plate bending theory.
 - (b) Explain reduced integration. Under what circumstances reduced integration is advantageous?
 - X. (a) Discuss axisymmetric problems and state the stress-strain and strain-displacement relations for axisymmetric problems.
 - (b) Explain how to arrive at the nodal force vector when one side of an axisymmetric triangular element is subjected to uniformly varying load.

 $(5 \times 20 = 100 \text{ marks})$

