Time: Three Hours

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Seventh Semester

Branch: Civil Engineering

CE 010 703—DESIGN OF CONCRETE STRUCTURES—II (CE)

(New Scheme—2010 Admission onwards—Regular/Supplementary)

Relevant IS Codes are permitted.

Codes die permitted.

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Explain basic principle of prestressed concrete.
- 2. List notes on counterfort retaining walls.
- 3. Write notes on development length requirements at supports for beams.
- 4. List notes on nature of stresses in spherical domes.
- 5. Explain in general about stagings and bracings in water tanks.

 $(5 \times 3 = 15 \text{ marks})$

Maximum: 100 Marks

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain about pretensioning and post-tensioning systems in prestressing.
- 7. Explain active earth pressure and passive earth pressure.
- 8. Find the ultimate moment of resistance of a 120 mm. thick slab, reinforced with 8 mm. φ bars at 180 mm. spacing located at an effective depth of 80 mm. Assume M20 concrete and Fe 415 steel.
- 9. Explain about analysis of stresses in a spherical dome of uniform thickness under a concentrated load at crown.
- 10. Explain about flexible and rigid joints in water tanks.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions.

Each question carries 12 marks.

11. (a) Explain in detail about various losses in prestress.

LIBRAR

Or

- (b) A RC beam, 120 mm. wide by 250 mm. deep spanning over 9 m. is prestressed by a straight cable carrying an effective prestressing force of 250 kN located at an eccentricity of 45 mm. The beam supports a live load of 1.5 kN/m. Calculate the resultant stress distribution for central cross-section of beam. The density of concrete is 25 kN/m.³
- 12. (a) Design a cantilever retaining wall for following data:
 - (i) Height of earth to be retained is 7 m. above bottom base with level top and surcharge of 1850 kg./m.²
 - (ii) Angle of repose of soil $\phi = 28^{\circ}$.
 - (iii) Bearing pressure of soil = 160 kN/m.²
 - (iv) Coefficient of friction between soil and base slab = 0.50.

01

- (b) Design a counterfort retaining wall to retain earth 6.0 above basement level. The density of earth is 17,000 N/m³ and $\phi = 27^{\circ}$. The bearing capacity of soil is 130 kN/m².
- 13. (a) Design a simply supported slab for a room of dimensions 3×4 m. and 240 mm. thick brick wall around. Assume slab corners are free to lift up. Take live-load of 3.5 kN/m^2 and finish load of 1 kN/m.

Or

- (b) Explain in detail about circular beams with u.d.l. on symmetrically placed columns.
- 14. (a) Design a short square column, with effective length 3.5 m. of resisting a $P_u = 1500$ kN and $M_u = 80$ kNm under uniaxial eccentricity. Assume M25 concrete and Fe 415 steel.

Or

- (b) Design a short circular column with spiral reinforcement having effective length, 2.5 m. capable of resisting $P_u = 1000$ kN and $M_u = 50$ kNm under uniaxial eccentricity.
- 15. (a) Explain in detail about design of ground supported and overhead water tank in detail.

Or

(b) Explain in detail about design of circular water tanks with flat bottom.

 $(5 \times 12 = 60 \text{ marks})$