B 650B1 Total pages: 2

Register No:	Name:
register 1.0.	1 (41110)

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED MCA DEGREE EXAMINATION(R,S), NOVEMBER 2024

(2020 SCHEME)

Course Code : 20IMCAT103

Course Name : Basic Mathematics

Max. Marks : 60 Duration: 3 Hours

Scientific calculator is allowed in the examination hall.

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define a singleton set with an example?
- 2. What is the Cartesian product $A \times B \times C$ where $A = \{0, 1\}, B = \{1, 2\}$ and $C = \{0, 1, 2\}$?
- 3. Give an example of a relation on a set that is neither symmetric nor antisymmetric?
- 4. Let $A = \{a, b, c, d\}$ and $R = \{(a, a), (a, d), (d, a), (d, d), (b, b), (b, c), (c, b), (c, c)\}$. Write the matrix of R and sketch its graph?
- 5. Give the Geometrical meaning of Injective, Surjective and Bijective functions.
- 6. Explain one-one and onto function with pictorial presentation.
- 7. Find $\frac{d}{dx}(\frac{4}{x^2})$?
- 8. When do we say that a function has derivative at a point.
- 9. Evaluate $\int_0^1 x e^x dx$
- 10. Evaluate $\int_{0}^{1} (x^{2} + x^{3}) dx$

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. State and prove De Morgan's Law.

OR

- 12. (a) Prove the first distributive law which states that $A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$
 - (b) Find the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$.

MODULE II

- 13. (a) Show that the "greater than or equal" relation is a partial ordering on the set of integers. (b) Let $A = \{2, 3, 4\}$ and $B = \{3, 4, 5, 6, 7\}$. Assume a relation R from A to B such that
 - $(x,y) \in R$ when a divides b (with zero remainder). Determine relation R, its domain, co-domain and range.

OR

14. Describe the classification of relations with example.

6

6

15. Let the function f(x) = 2x + 1 from R to R. Is f invertible and if it is invertible, then find its inverse?

- 16. (a) Let f_1 and f_2 be two functions from $R \to R$ such that $f_1(x) = x^2$ and $f_2(x) = x x^2$. Find $f_1 + f_2$ and $f_1 f_2$?
 - (b) Let $f: N \to N$ defined by $f(n) = 3n, n \in N$. Express the function diagrammatically. Also write domain, range and co domain of the function.

MODULE IV

17. (a) Use implicit differentiation to find $\frac{dy}{dx}$ for $x^2y + xy^2 = 6$. (b) Evaluate h'(x) for $h(x) = x \tan(\frac{2}{\sqrt{x}}) + 7$.

6

6

6

6

18. (a) Find $f'\left(\frac{\pi}{2}\right)$ if $f(x) = \sqrt{1 + \cos x}$. (b) Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

MODULE V

19. (a) Find the area of the region between the x-axis and the graph of $f(x) = x^3 - x^2 - 2x, -1 \le x \le 2$

6

(b) Evaluate $\int_{1}^{4} \left(\frac{3}{2} \sqrt{x} - \frac{4}{x^2} \right) dx$.

OR

20. (a) Use a substitution to find an anti derivative and then apply the Fundamental Theorem to evaluate the integral $\int_0^1 t\sqrt{t^2+1} dt$

6

(b) Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot \theta \ cosec^2 \theta \ d\theta$