A	Total Pages:	3

Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER B.TECH DEGREE EXAMINATION (S,FE), NOVEMBER 2024

Course Code: 20MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$.
- 2. Find all eigenvalues of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
- 3. Find $\frac{\partial^2 f}{\partial x \partial y}$ at (1,1) where $f = x^2 y$.
- 4. Show that the function $f(x,y) = x^2 y^2 + 2xy$ satisfies Laplace equation $f_{xx} + f_{yy} = 0$.
- 5. Evaluate $\int_{1}^{3} \int_{2}^{4} (40 2xy) dy dx$.
- 6. Use double integral, find the volume of the solid that is bounded above by the plane z = 4 x y and below the rectangle $R = [0,1] \times [0,2]$.
- 7. Determine whether the series $\sum_{k=0}^{\infty} \frac{5}{4^k}$ converges or not, and if so find its sum.
- 8. Use appropriate test, determine whether the series $\sum_{k=1}^{\infty} \frac{1}{2k^2+k}$ converges or diverges.
- 9. Find the Maclaurin series expansion of $\cos x$
- 10. If f(x) is a function defined in the interval [-l, l], then write Euler's formula to find $a_0, a_n \& b_n$ in the Fourier series expansion of f(x)

PART B

120A1

MODULE I

Solve the following simultaneous equation 11.

$$x + 3y - 2z = 0$$
$$2x - y + 4z = 0$$
$$x - 11y + 14z = 0$$

(6)

Check whether the matrix $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$ is diagonalizable. If yes, find P such (8)that $D = P^{-1}AP$ is diagonal matrix.

OR

- 12. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (8)a)
 - b) Investigate for what values of a, b the simultaneous equations; (6)x + y + 2z = 2; 2x - y + 3z = 2; 5x - y + az = b

Have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

MODULE II

- a) Let $f(x, y, z) = x^3y^5z^7 + xy^2 + y^3z$. Find 13. (8)(i) f_{xy} (ii) f_{yz} (iii) f_{xz} (iv) f_{xx}
 - Find the local linear approximation L of $f(x,y,) = \sqrt{x^2 + y^2}$ at P = (3,4). Also (6)compare the error in approximating f by L at Q = (3.04,3.98) with the distance between P and O.

OR

- a) Let f be a differentiable function of one variable an let w = f(u), where 14. (8) $u = x + 2y + 3z. \text{ Show that } \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6 \frac{\partial w}{\partial u}$ If $z = log\sqrt{x^2 + y^2}$, prove that (i) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 1$ (ii) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
 - (6)

MODULE III

- Use polar co-ordinates to evaluate $\iint_R e^{-(x^2+y^2)} dA$ when R is the region enclosed by 15. (7)the circle, $x^2 + y^2 = 1$
 - Use a double integral to find the area of the region R enclosed between the (7)parabolas $y = \frac{1}{2}x^2$ and the line y = 2x.

OR

16. (7)Evaluate $\int_0^\infty \int_0^x xe^{-\frac{x^2}{y}} dydx$ by changing the order of integration.

120A1

	b)	Use a triple integral to find the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the planes $z = 1$ and $x + z = 5$.	(7	
		MODULE IV		
17.	a)	Test the convergence of the following series	(8	
		i) $\sum_{k=1}^{\infty} \frac{1}{k!}$ ii) $\sum_{k=1}^{\infty} \frac{k}{2^k}$		
	b)	Test the convergence of the following series	(6	
		i) $\sum_{k=2}^{\infty} \left(\frac{4k-5}{2k+1}\right)^k$ ii) $\sum_{k=1}^{\infty} \frac{1}{(\ln(k+1))^k}$		
OR				
18.	a)	Show that the series $\sum_{1}^{\infty} \frac{[(k+1)r]^k}{k^{k+1}}$ is convergent if $r < 1$ and divergent if $r \ge 1$.	(8	
	b)	Check whether the series $\sum_{k=1}^{\infty} (-1)^k \frac{(2k)!}{k^{2k}}$ converges absolutely.	(6	
MODULE V				
19.	a)	Let $f(x) = \begin{cases} -k, -\pi \le x \le 0 \\ k, 0 \le x \le \pi \end{cases}$. Find the Fourier series expansion of $f(x)$.	(8)	
	b)	Write the Taylor series expansion for the function $f(x) = \frac{1}{x}$ about $x = 1$	(6	
OR				
20.	a)			
	1.			
	b)	Find the Fourier series expansion of $f(x) = x^2$ in $(-\pi, \pi)$.	(6	
