Register No: .		Name:				
	SAINT	GITS COLLEGE OF ENGINEERING (AUTONOMOUS)				
(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)						
	SECOND SEMESTER M.TECH DEGREE EXAMINATION(R,S), MAY 2024					
M. Tech. Robotics and Automation						
(2021 SCHEME)						
Course Code	:	21RA206-D				
Course Name	:	Adaptive Control Systems				

486B1

Max. Marks : 60

F

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Explain why estimating parameters accurately is crucial for the performance of dynamical systems.
- 2. Examine the advantage of self-tuned regulators in handling disturbances with known characteristics compared to fixed-parameter controllers.
- 3. Explain the role of Lyapunov Theory in ensuring stability in MRAS design.
- 4. List any three differences between MRAC and STR.
- 5. Examine how gain scheduling enhance the performance of controllers in dynamic system.
- 6. Explain the term "non-linear transfer function".
- 7. Examine the steps involved in selecting robotic sensors.
- 8. Quote the significance of controller wind-up.

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

9. Examine the principle of least squares in implementing control algorithms with the help of 6 equations.

OR

10.	Evaluate the role of adaptive control systems in enhancing the performance of real world problems.	6
	MODULE II	
11.	Illustrate the significance of pole placement design in self-tuning regulators.	6
	OR	
12.	With relevent block diagram, demonstrate how self-adjusting regulators operate.	6
	MODULE III	
13.	Illustrate the implementation of MIT rule for non-linear systems with the help of a block diagram.	6
	OR	
14.	Distinguish between model reference adaptive control and model predictive control.	6

MODULE IV

15. Sketch out the application process of self-tuned regulators in nonlinear systems.

Total pages:

Duration:3 Hours

2

16.	Differentiate between feedback linearization and adaptive feedback linearization. MODULE V	6			
17.	Evaluate situations where gain scheduling approach can be applied in the case of wheeled mobile robot navigation.	6			
	OR				
18.	Implement gain scheduling in a ship steering system. MODULE VI	6			
19.	Using an example, analyze the impact of computational delay on the implementation of nonlinear systems.	6			
	OR				

20. Explore the challenges associated with implementing adaptive control and enumerate alternative 6 approaches.

OR