Register No.:

Name:

# SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

#### SIXTH SEMESTER B.TECH DEGREE EXAMINATION (R,S), MAY 2024 ROBOTICS AND AUTOMATION

(2020 SCHEME)

Course Code : 20RBT306

Course Name: Signals and Systems

## PART A

## (Answer all questions. Each question carries 3 marks)

- 1. Sketch the signal x(t)=-2u(0.5t+2).
- 2. Find the even and odd components of the signal  $x(t)=1+2t+3t^2+4t^3$ .
- 3. Find the Fourier transform of unit step signal.
- 4. Determine the Nyquist rate for the following signals
  - (i)  $x(t)=2 \operatorname{sinc}(100\pi t)$  (ii) $x(t)=10 \operatorname{sin40}\pi t \cos 300\pi t$ .
- 5. Using the properties of Z transform find the Z transform of the following signals
  - (i) x(n)=u(-n+1) (ii)  $2(3)^nu(-n)$ .
- 6. State and prove differentiation in frequency domain property of DTFT.
- Consider x(n)={1,2,-3,0,1,-1,4,2} with 8 point DFT. Evaluate the following values of X(K) without computing DFT
  (i)X(0) (ii)X(4).
- 8. Determine the output response y(n) if  $x(n) = \{1,2,3,1\}$  and  $h(n) = \{1,1,1\}$ .
- 9. Draw the basic butterfly diagram of DFT algorithm.
- 10. Differentiate between FIR and IIR filter.

#### PART B

# (Answer one full question from each module, each question carries 14 marks)

#### **MODULE I**

- 11. a) Check the following systems are (i)static or dynamic (ii)Linear or nonlinear (iii)causal or non-causal (iv)Time-invariant or time variant (9) (i)y(n)=x(n)x(n-2) (ii)y(n)=a<sup>n</sup>u(n).
  - b) Determine whether the following signals are energy signals or power signal and calculate their energy or power (5) (i)x(t)=sin<sup>2</sup>ωt (ii)x(t)=tu(t).

## OR

12. a) Find whether the following systems are stable or not (i)h(t)= $(2+e^{-3t})u(t)$  (ii)y(n)=x(n)+0.5x(n-1)+0.25x(n-2). (6)

# 650A2

Examine whether the following signals are periodic or not? If periodic determine the fundamental period (i)sin 12 $\pi$ t (ii)3u(t)+2 sin 2t (iii)3 sin 200 $\pi$ t +4 cos100t (8) (iv)  $\cos(\frac{n}{6})\cos(\frac{n\pi}{6})$  (v)sin $\frac{2\pi n}{3}$ + cos $\frac{2\pi n}{5}$ .

### **MODULE II**

13. a) Obtain the trigonometric Fourier series for the wave form shown in the below figure.



b) State and Prove Parseval's relation.

(5)

(5)

#### OR

14. a) State and prove sampling theorem for low pass signal. (9)
b) Find the Fourier transform of the following

(i) te<sup>-at</sup>u(t)
(ii) cos ω<sub>0</sub>t u(t).

#### MODULE III

| 15. | a) | Find the Z-transform and ROC of the following signals              |     |
|-----|----|--------------------------------------------------------------------|-----|
|     |    | (i) $x(n) = (\frac{1}{2})^n u(n-2)$ (ii) $a^n u(n) - b^n u(n-1)$ . | (9) |

b) Write the properties of ROC.

#### OR

- 16. a) Consider a discrete time LTI system with impulse response  $h(n)=(1/2)^n u(n)$ . Use Discrete Time Fourier Transform(DTFT) to (9) determine the response to the signal  $x(n)=(3/4)^n u(n)$ .
  - b) Using the properties of DTFT find the DTFT of the following. (i)u(n+1)-u(n-2) (ii) $n 3^{-n} u(-n)$ . (5)

#### **MODULE IV**

- 17. a) Find the output of the sequence for the given h(n) and x(n) using overlap save method (9) x(n)={1,2,-1,2,3,-2,-3,-1,1,1,2,-1} h(n)={1,2}.
  - b) Find the circular convolution of the sequence  $x_1(n)=\{1,-1,-2,3,-1\}$  (5)  $x_2(n)=\{1,2,3\}.$

#### OR

18. a) Compute the 8-point DFT of the sequence given below  $x(n)=1 \quad 0 \le n \le 3$  (10)

b)

# 650A2

- 0 4≤n≤7.
- Find the IDFT of  $Y(K) = \{1, 0, 1, 0\}$ . b)

# **MODULE V**

| 19. | a) | Find the DFT of the give sequence $x(n)$ using DIT algorithm.                                                   | (10) |
|-----|----|-----------------------------------------------------------------------------------------------------------------|------|
|     | b) | Draw the direct form structure of the FIR system described by the                                               |      |
|     |    | transfer function                                                                                               | (4)  |
|     |    | $H(z) = 1 + \frac{1}{2}z^{-1} + \frac{3}{8}z^{-2} + \frac{5}{4}z^{-3} + \frac{1}{2}z^{-4} + \frac{7}{8}z^{-5}.$ |      |
|     |    | OR                                                                                                              |      |

- 20. Obtain the direct form I,II of the IIR system described by the a) difference equation (10) $y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2).$ Obtain the IDFT of the following sequence X(K)={6,-2+2j,-2,-2-2j}
  - b) (4) using DIF algorithm.

(4)