Register No:				Name:			
		SAIN	NTGITS COL	LEGE OF ENGINEERING (AUTONOMOUS)		
		(AF	FILIATED TO APJ ABI	DUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)			
		5171	H SENIESIEK	B.IECH DEGREE EXAMINATION (R,S), MAY 2024 Robotics and Automation			
				(2020 SCHEME)			
Cours	se Code	:	20RBT372				
Cours	se Name	:	Soft Comput	ting Techniques			
Max.	Marks	:	100	Du	ration:3 Hours		
			(Answ	PART A er all questions. Each question carries 3 marks)			
1	Fxnlain	how a	biological neuro	on and an artificial neuron are related			
י. ר	Distinguish hydrogen and hand a supersting						
2.	Distinguish between soft and hard computing.						
3.	Summarize auto-associative memory in ANN with apt illustrations.						
4.	'BAM returns patterns of different sizes.' Justify the statement diagrammatically.						
5.	Describe multi-objective decision-making in fuzzy systems.						
6.	Compare and contrast classic logic and fuzzy logic with an example each.						
7.	Is there a need for fuzzy classification? Justify your answer with an example.						
8.	Paraphrase adaptive neuro-fuzzy inference systems.						
9.	Give an application of GA in image processing.						
10.	State the factors affecting convergence of GA. Illustrate the same.						
				PART B			
		(Answer one full q	uestion from each module, each question carries 14 marks) MODULE I			
11.	List and	l explai	n the various ste	ps of the back propagation algorithm. OR	14		
12.	Explain	the thr	ee artificial neur	al network learning methodologies. MODULE II	14		
13.	Design	a Hebb	network to reali	ize a basic gate. OR	14		

14. Using apt illustrations, describe self-organizing maps. Draw and explain Kohonen networks. 14 **MODULE III**

 $R = \begin{bmatrix} 0.4 & 0.1 & 0.7 \\ 0.1 & 0.2 & 0.2 \\ 0.4 & 0.5 & 0.3 \end{bmatrix}$ Consider the fuzzy relation R defined in A x A. Check whether the fuzzy 15. 14

relation is i) Reflexive, ii) Symmetric and iii) Transitive.

289B1

Name[.]

16. Consider the two fuzzy sets A and B such that $A = \left\{\frac{0.2}{2} + \frac{0.5}{4} + \frac{0.3}{6} + \frac{0.8}{8} + \frac{0.1}{10}\right\}$ and 14 $B = \left\{\frac{1}{2} + \frac{0.2}{4} + \frac{0.4}{6} + \frac{0.5}{8} + \frac{0.2}{10}\right\}$. Find their union, intersection, complement, bounded sum and bounded difference.

MODULE IV

17.	Illustrate and explain the Centroid de-fuzzification method with the help of an example.						
	OR						
18	Define fuzzy logic control Illustrate the block diagram of a closed loop fuzzy control system	14					

 Define fuzzy logic control. Illustrate the block diagram of a closed loop fuzzy control system. 14 Explain the importance of fuzzy rules in the design of a fuzzy logic controller. Enumerate the four structures of the fuzzy production rule system.

MODULE V

19. Enlist and explain the various features of evolutionary algorithms.14

OR

20. Paraphrase the Roulette Wheel and Boltzmann selection procedures adopted in GA. 14
