Name:

Total Pages: **3**

Register No.:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SIXTH SEMESTER B. TECH DEGREE EXAMINATION (R,S), MAY 2024 ELECTRONICS AND COMMUNICATION ENGINEERING

(2020 SCHEME)

- Course Code : 20ECT302
- Course Name: Electromagnetics

Max. Marks : 100

Smith Chart to be supplied on request.

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Formulate an expression to find electric field intensity for a system of point charges.
- 2. For a vector field A, show that ∇ . $\nabla XA = 0$.
- 3. Derive the relation between scalar potential and vector potential.
- 4. Derive continuity equation from fundamental laws.
- 5. State Poynting's Theorem along with its mathematical expression.
- 6. Explain the different types of wave polarization.
- 7. State Snell's law. What is its significance in wave propagation?
- 8. A lossless transmission line has primary constant L = 0.01μ H/m, C = 100pF/m. Find the characteristic impedance of the line.
- 9. Explain the propagation of electromagnetic wave in a rectangular waveguide.
- 10. Elaborate on dominant modes in rectangular waveguides.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) In a certain material $\sigma = 0$, $\mu = \mu_0$ and $\epsilon = 81\epsilon_0$. The magnetic (7) field intensity in this material is $H=10 \cos(2\pi \times 10^9 t + \beta x) a_z$ A/m. Determine E and β .
 - b) Point charges 5nC and -2nC are located at (2, 0, 4) and (-3, 0, 5), (7) respectively.
 - i) Determine the force on a 1nC point charge located at (1, -3, 7).
 - ii) Find the electric field \mathbf{E} at (1, 3, 7).

OR

12. a) Current sheets of 20 a_x A/m and -20 a_x A/m are located at y = 1 (7) and y = -1 respectively. Find **H** in the region -1 < y < 1.

Duration: 3 Hours

544A3

b) Explain Poisson's and Laplace equation in electrostatics with (7) necessary equations. Give application for each.

MODULE II

- 13. a) Formulate an expression to find the capacitance of a two-wire (7) transmission line.
 - b) State and prove boundary conditions for **E** and **H** in accordance (7) with Maxwell's equations.

OR

- 14. a) Formulate Maxwell's equation for electromagnetic fields from the (8) basic laws of electric field and magnetic field.
 - b) Formulate an expression to find the inductance of a coaxial (6) cable.

MODULE III

- 15. a) Analyze wave propagation and solution of the wave equation in a (7) lossless dielectric medium. Also, derive the expressions for
 - i) Attenuation constant
 - ii) Phase velocity

Α

- iii) Phase constant
- iv) Intrinsic impedance
- b) Analyze the behaviour of a plane electromagnetic wave with (7) parallel polarization when it is incident at an angle at the boundary of two lossless media at z = 0.

OR

- 16. a) Analyze the behaviour of a plane electromagnetic wave when it is incident normally at the boundary of a perfect dielectric and a perfect conductor at z = 0. (8)
 - b) State and explain skin depth. For a good conductor, prove that
 α = β, where, α is the attenuation constant and β is the phase constant.

MODULE IV

- 17. a) Derive transmission line equation and the expressions for (6)
 - i) Propagation Constant
 - ii) Characteristic Impedance
 - iii) Input impedance
 - b) A 25 + j100 Ω load is connected to a 50 Ω lossless transmission (8) line. Using smith chart, find
 - i) Reflection coefficient at load
 - ii) VSWR
 - iii) Load admittance
 - iv) Input impedance at 0.2λ from the load

OR

544A3

- 18. a) A lossless 50 Ω transmission line of length 3.2 m is terminated (6) with an impedance of 30-j50 Ω. If the line operates at a frequency of 400MHz, determine the input impedance.
 - b) A 100+j150 Ω load is connected to 75 Ω lossless line. Using smith (8) chart find
 - i) Reflection coefficient
 - ii) Standing Wave Ratio
 - iii) The load admittance Y_L
 - iv) Z_{in} at 0.4 λ from the load
 - v) The locations of voltage maximum and voltage minimum with respect to the load if the line is 0.6λ long.

MODULE V

- a) Derive the expression for all the electric and magnetic field (8) components of a rectangular waveguide in Transverse Magnetic Mode.
 - b) For TE₁₀ mode of propagation in a rectangular wave guide, with (6) length 8cm and 6 cm respectively, find the following when frequency of operation is 6 GHz.
 - i) Cut off frequency
 - ii) Cut off wavelength
 - iii) Guide wavelength
 - iv) Phase constant
 - v) Phase velocity
 - vi) Wave impedance

OR

- 20. a) Derive the expression for all the electric and magnetic field (8) components of a rectangular waveguide in Transverse Electric Mode.
 - b) Consider a TM_{13} propagating inside a rectangular waveguide (6) having $a = 3 \text{ cm}, b = 1.6 \text{ cm}, \sigma = 0, \mu = \mu_0, \epsilon = 4\epsilon_0$ and $H_x = 2 \sin(\pi x/a) \cos((3\pi y/b)) \sin(\pi \times 10^{11}t - \beta z) \text{ A/m}.$ Determine
 - i) Cut-off frequency
 - ii) Cut off wavelength
 - iii) Phase constant
 - iv) Propagation constant
 - v) Intrinsic impedance.

--