Page 1 of 2

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

921A3

Name:

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) FOURTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2024

(2020 SCHEME)

Course Code : 20CST292

Course Name: **Number Theory**

Max. Marks : 100

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Define Bezout's identity with example.
- 2. Apply Euclid's algorithm to find GCD (2740, 1760).
- Is 127 a Mersenne prime? Justify. 3.
- Solve 4⁵³² (mod 11) using Fermat's little theorem. 4.
- 5. $5^{i} \pmod{13} = 8$. Determine i.
- What are the three security goals? 6.
- Define the Legendre symbol with an example. 7.
- Show that $\sigma(n) = \sigma(n + 1)$ for n = 206. 8.
- 9. Express 2104 as sum of three squares.
- 10. Every prime of the form 4k+1 can be represented uniquely as the sum of two squares. Justify.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

11.	a)	Prove that if a b and c d then ac bd.	(5)
	b)	Find general solutions of the Diophantine equation 1485x + 1745y = 15.	(9)

OR

12.	a)	Describe the properties of modular arithmetic.	(5)
	b)	Find the multiplicative inverse of 550 mod 1769 by applying	(0)
			(9)

extended Euclidean algorithm.

MODULE II

13.	a)	Solve the linear congruen	ce $14x \equiv 30 \pmod{100}$.	(6)
-----	----	---------------------------	---------------------------------	-----

Explain Fermat's primality testing and factorization method with b) (8)example.

Duration: 3 Hours

921A3

- (5) Explain Chinese remainder theorem and solve the system of b) (9) congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$. **MODULE III** 15. Show that $2^{341} \equiv 2 \pmod{341}$ a) (5) What are Carmichael numbers? Show that 1729 is a Carmichael b) (9) number. OR 16. Find the last two decimal digits of 3^{256} . (6) a) b) Differentiate between symmetric and asymmetric encryption (8) techniques. **MODULE IV** 17. Define quadratic residue. Determine the quadratic residues and a) (7)non-residues of modulo 11. Solve the quadratic congruence $2x^2 + 3x + 1 \equiv 0 \pmod{7}$ (7)b) OR 18. Define Dirichlet product with an example. Describe a) its (7)properties. b) Verify that τ (n) = τ (n + 1) = τ (n + 2) = τ (n + 3) holds for (7)n = 4503.**MODULE V** 19. Show that sums of two squares is closed under multiplication. a) (7)
 - Express the product (13*17) as the sums of two squares. Define Gaussian integers. Factorize the Gaussian integer b) (7)440 - 55i.

OR

Define Pell's equation. Solve the Pell's equation $x^2 - 2y^2 = 1$. 20. (7)a) Express $\frac{227}{157}$ as a finite simple continued fraction. b) (7)

14.

a)