п

· . . .

ът

Register No: .	• • • • • • • • •		IName:
	SAI	NTGITS COLLEGE (DF ENGINEERING (AUTONOMOUS)
	(AI	FILIATED TO APJ ABDUL KALAM	FECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
	FOUF	TH SEMESTER B.TEC	H DEGREE EXAMINATION(R,S), MAY 2024
		Com	non for ECE & EEE
		(2020 SCHEME)
Course Code	:	20MAT204	
Course Name	:	Probability, Random I	Process and Numerical Methods
Max. Marks	:	100	Duration:3 Hours
	S	cientific calculator and statis	tical tables are allowed in the examination hall.

PART A

(Answer all questions. Each question carries 3 marks)

- 1. The mean and variance of binomial variate X are 16 and 8. Find P(X=1).
- 2. Check whether the function $f(x) = \frac{x}{15}$, x = 0, 1, 2, 3, 4, 5 can be PMF? Justify your answer.
- 3. The service time in a customer care center is exponentially distributed with a mean 2 minutes. (i) Write the PDF of the service time distribution. (ii) Find the probability that the service time exceeds 3 minutes.
- 4. If the probability density of a random variable is given by:

 $f(x) = \begin{cases} mx^2 & ; 0 < x < 1\\ 0 & ; \text{elsewhere} \end{cases}$ Find (i) the value of m. (ii) $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$. (iii). $P\left(X > \frac{2}{3}\right)$.

- 5. Explain Poisson process.
- 6. Define autocovariance of a random process.

7. Using Simpson's rule, compute $\int_{0}^{0.6} e^{-x^2} dx$ using six sub intervals.

- 8. Find the approximate value of $\sqrt{5}$ using Newton-Raphson method.
- 9. Use Euler's method to solve $\frac{dy}{dx} = x + xy + y$, y(0) = 1. Compute y at x = 0.15 by taking h = 0.05.
- 10. Write down the normal equations to fit a curve of the form $y = a + bx + cx^2$ by the method of least squares.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Out of 2000 families with 4 children, how many would you expect to have					
	(i) at least one boy				
	(ii) 1 or 2 girls				
	b) Derive the mean and variance of Poisson distribution.	7			
	OR				
12.	a) Find α and β if $Y = \alpha X + \beta$ has mean 4 and variance 16 where X is a random variable	7			

with mean 8 and variance 4. b) The mean and variance of a binomial variate are X are 16 and 18. Find (i)P(X = 1) 7 and $(ii)P(X \ge 2)$

MODULE II

13. (a) For the distribution with PDF,
$$f(x) = \begin{cases} kx(2-x) & ; 0 \le x \le 2\\ 0 & ; \text{elsewhere} \end{cases}$$
.

Find (i) value of k (ii) $P(1 \le X \le 2)$ (iii) Var(X).

(b) A bus arrives every 10 minutes at a bus stop. Assuming that the waiting time for X for bus is uniformly distributed. Find the probability that a person has to wait for the bus (i) for more 7

than 7 minutes,(ii) between 2 and 7 minutes and (iii) for more than 5 minutes.

OR

14. (a) Derive the expressions for E(X) and Var(X) of the Uniform

distribution, $U(x, \alpha, \beta) = rac{1}{eta - lpha}$; lpha < x < eta.

(b) Let X be a normal distribution with mean 20 and standard deviation 5. Find the probability 7 that (i) P(X > 23) and (ii) P(|X - 20| < 5).

7

MODULE III

15. A random process X(t) is defined by $X(t) = 2\cos(5t + \theta)$ where θ is uniformly distributed in 14 $[0, 2\pi]$. Find mean, autocorrelation and autocovariance.

UK

16. a) Find the mean, variance and total power of WSS process X(t), given the auto correlation 7 $R_{xx}(\tau) = \frac{55\tau^2+90}{2.2\tau^2+3}$.

b) The autocorrelation of the random telegraph signal process is given by $R(\tau) = a^2 e^{-2\alpha|\tau|}$. Determine the power density spectrum of the random telegraph signal. **MODULE IV**

17.a) Evaluate $\int_{0}^{\frac{\pi}{2}} cosx \, dx$ using Trapezoidal rule with 6 sub intervals.7b) Solve the equation $3x + sinx - e^x = 0$ by regula falsi Method.7

OR

a) Compute $\int \frac{1}{1+x^2} dx$ using Simpson's method with step size h = 0.25. 18. 7 b) From the following data, find y at x = 43 using Newton's forward interpolation formula. 7 x405060 7080 90 184204226250276304y

MODULE V

19. a) Using Gauss Seidel method, solve the following system of equations. 8x + y + z = 8 2x + 4y + z = 4 x + 3y + 5z = 57

b) Fit a staright line of the form y = ax + b by the method of least squares, to the following data:

x	1	2	3	4	5	
y	6	7	9	10	12	

OR

20. a) Use Runge-Kutta second order method find the value of y at x = 0.6, given 7 $\frac{dy}{dx} = y - x^2 + 1$, y(0) = 0.5 and taking step size h = 0.2. b) Solve $y' = x^2(1+y)$ for x = 1.4 using Adams-Moulton method, 7 given y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979.
