D 518B1 Total pages: 2

Register No:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R,S), MAY 2024

Electrical and Electronics Engineering (2020 SCHEME)

Course Code 20EET206

Digital Electronics Course Name

Max. Marks 100 **Duration:3 Hours**

Scientific calculator is allowed in the examination hall.

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Realise basic logic gates using NOR gates.
- 2. What is the speciality of Gray code? How it is different from Excess-3 code?
- 3. Draw the diagram of a half adder.
- 4. In a K-Map with variables A and B, if the diagonal cells are filled with '1s', write the possible expressions.
- 5. Abstract about a multiplexer in digital electronics.
- 6. With proper example, discuss about a code converter.
- 7. Draw the diagram of a 4 bit asynchronous counter.
- 8. Differentiate between SR flip-flop and JK flip-flop.
- 9. Draw the block diagram of a successive approximation register analog to digital converter.
- 10. Explain the state machines in digital circuits.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. (a) Compare and contrast binary and hexadecimal number systems (b) Find the octal equivalents of 23, 157, 1104, 1944, 3418, 4096 and 16256 7 OR
- 12. 9 (a) Compare and contrast various signed number representation schemes in digital electronics.
 - (b) Justify usage of two's complement method for subtraction of two binary numbers. 5

MODULE II

Explain the operation of a 4 bit adder/subtractor to perform addition operation when Mode = 1 13. 14 else subtraction operation.

OR

- (a) Prove that (i) AB + AC = A(B + C) (ii) (A + B) + C = A + (B + C)14. 6 8
 - (b) Reduce the given expressions (i) Z = A'B'C + A'B'C' + ABC + ABC' + ABC
 - (ii) Y = (A + B + C). (A' + B + C'). (A + B' + C).(A + B + C')

MODULE III

15.	(a) Realise a two bit magnitude comparator using basic logic gates.	7
	(b) Abstract about a parity checker with neat diagrams	7
	OR	
16.	(a) Abstract about significance and relevance of ALU in computer systems	5
	(b) Design a Logical unit with logical operations - OR (opcode = 00), AND (opcode = 01), NAND (opcode = 10) and NOR (opcode = 11)	9
	MODULE IV	
17.	(a) With neat diagrams and tables, explain the working of a Ring counter.	7
	(b) Draw the diagram of a Serial In Parallel Out shift register.	7
	OR	
18.	Design a synchronous up/down counter to count from "000" to "111" if control signal is HIGH else from "111" to "000".	14
	MODULE V	
19.	(a) What is the role of a Programmable Logic Array in digital electronics?	5
	(b) Compare and contrast PLA and PAL.	9
	OR	
20.	(a) Justify the usage for VHDL for modeling of digital circuits.	4
20.	(b) What are the different styles of modeling in VHDL?	10
