Register No:			Name:					
SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)								
(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)								
FOURTH SEMESTER B.TECH DEGREE EXAMINATION(R,S), MAY 2024								
Electronics and Communication Engineering								
(2020 SCHEME)								
Course Code	:	20ECT204						
Course Name	:	Signals and Systems						
Max. Marks	:	100		Duration:3 Hours				

516B1

Total pages: 2

PART A

(Answer all questions. Each question carries 3 marks)

1. A discrete time signal x(n) is described by, x(n) = 1; n=1,2,3

-1;n=-1,-2,-3 0; n=0 |n|>3

Find y(n) = x(2n+2).

C

- 2. Describe elementary discrete time signals.
- 3. State the condition for BIBO stability of the system.
- 4. Prove that $R_{12}(\tau) = R_{21}(-\tau)$.
- 5. State Parseval's theorem in Fourier transform.
- 6. Determine the Fourier series coefficients of the signal $x(n) = 2 + \cos((\pi/3)n + (\pi/4))$.
- 7. Find the inverse Laplace transform of 1/(s+a).
- 8. Explain the concept of causality and stability in S domain.
- 9. Find DTFT of the signal $x[n] = \frac{1}{2} [\frac{1}{2}^n + \frac{1}{4}^n] u(n)$.
- 10. State and prove differentiation property in Z transform.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11. a) Determine whether the following system is static, time invariant, linear and causal. Give the 8 explanation for each.

 $y(t)=t^2x(t)+x(t-2)$

b) Determine whether the following system is time invariant, linear and 6 causal. y(n) = x(n) + 1/x(n-1).

OR

12. a) Check the periodicity of given signals. Find the fundamental period if periodic 8 (i) $x(n) = cos(\pi n/2) - sin(\pi n/8) + 3cos(\pi n/4 + \pi/3)$ (ii) $x(n) = e^{j(2\pi/3)n} + e^{j(3\pi/4)n}$ b) Find the even and odd components of the signal given by (i) $x(t) = cos(\omega_0 t + \pi/3)$ ii) $x(t) = [sin\pi t + cos\pi t]^2$ MODULE II

13.	a)Convolute the following sequences $x(n) = \{1, 2, 3\}$ h(n)= $\{1, 2, 3, 4\}$ using analytical method.	7
	b)Determine the response of the system characterized by the impulse response. $h(n)=(1/3)^n u(n)$ to	
	the input signal $x(n) = 2^n u(n)$.	7

OR

14.	a)Given two signals $x(t)=u(t+0.5)-u(t-0.5)$ and $h(t)=e^{j\omega_0 t}$, determine the value of ω_0 which ensures	7
	that $y(0)=0$, where $y(t)=x(t)*h(t)$.	_
	b) Find the convolution of the two discrete sequences given below	7
	$x_1(n) = 2^n u (-n-1)$ $x_2(n) = 4^n u (-n-1).$	

MODULE III

7

7

7

15. a) Find the Fourier transform of Rectangular pulse.Plot the spectrum. b) Find the convolution of the signal $x_1(t) = e^{-at}u(t)$; $x_2(t) = e^{-bt}u(t)$ using Fourier transform.

OR

16.	a) State and prove Convolution property and Parseval's relation of Fourier series.	8
	b) A periodic signal has the Fourier series representation given, If Fourier series of x(t) is	
	$X(k) = -k2^{- k }$. Find $Y(k)$ using proper properties of Fourier series.	
	(i) $y(t) = \frac{dx(t)}{dt}$ (ii) $y(t) = x(t-1)$	6

MODULE IV

17. a) Explain the effects of under sampling. 7 b)The spectral range of a signal extends from 5.6 MHz to 6.8 MHz. Find the minimum sampling 7 rate and maximum sampling time.

OR

18. a) Prove that the signals $x(t) = e^{-at} u(t)$ and $x(t) = -e^{-at} u(-t)$ have the same X(s) and differ only in 7 ROC. Also plot their ROCs. 7

b) Find the Laplace Transform and ROC of the signal.

 $x(t) = (e^{-2t} + 3e^{-3t}) u(t)$

MODULE V

19. a) Consider an LTI system that is characterized by the difference equation. 7 $y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n].$

Find the frequency response $H(e^{j\omega})$ and the impulse response h(n) of the system.

b) For the LTI system with system function H(z) find the impulse response so that the system is 7 stable. Can this system be both stable and causal.

$$H(z) = rac{5-10z^{-1}}{1-3.5z^{-1}+1.5z^{-2}}$$

OR

20. a) Write the impulse response of the system functions whose algebraic expression is given below. 7 Also check and justify the causality and stability.

$$H(z) = rac{1}{1 - rac{1}{2}z^{-1}} + rac{1}{1 - 2z^{-1}}, rac{1}{2} < |z| < 2$$

b) Evaluate the inverse Z-transform by partial fraction method for the given X(z).

$$X(z)=rac{3-rac{5}{6}z^{-1}}{ig(1-rac{1}{4}z^{-1}ig)ig(1-rac{1}{3}z^{-1}ig)}, |z|<rac{1}{3}$$
