D			UU I DU	I State
Register No:			Name:	
	SAIN	TGITS COLLEG	GE OF ENGINEERING (A)	UTONOMOUS)
	(AF	FILIATED TO APJ ABDUL KA	LAM TECHNOLOGICAL UNIVERSITY, THIRI	UVANANTHAPURAM)
	EIGH	ITH SEMESTER B.7	FECH DEGREE EXAMINATI	ON(R), MAY 2024
		F	Robotics and Automation	
			(2020 SCHEME)	
Course Code	:	20RBT412		
Course Name	:	MACHINE VISIO)N	

Max. Marks : 100

X T11 4 4 41

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Illustrate the purpose of a lens in camera.
- 2. Discuss the advantages of Camera Link for high-resolution imaging applications.
- 3. Provide the mathematical expression for the 2D Discrete Fourier Transform of an image f(x,y).
- 4. Define Affine transformations in the context of computer graphics and image processing.
- 5. Describe the nearest-neighbor interpolation algorithm used for image resizing.
- 6. Write the importance of image segmentation in computer vision applications.
- 7. Describe the fundamental principles and methodologies utilized for object detection in the context of image processing.
- 8. Define the edge-based approach to image segmentation and discuss its relevance in computer vision applications.
- 9. Define Principal Component Analysis (PCA) and explain its purpose in dimensionality reduction.
- 10. Differentiate clustering and classification in image processing.

1.

PART B

(Answer one full question from each module, each question carries 14 marks) MODULE I

11.	a) mustrate the working of a CiviOS camera.	- 7
	b) Explain the following with necessary diagrams i) Gaussian optics ii) Depth field.	7
	OR	
12.	a) Compare and contrast the IEEE 1394, USB 2.0, and USB 3.0 Vision interfaces.b) Explain the working mechanism of a three-chip camera used in imaging technology with necessary diagram.	6 8
	MODULE II	
13.	a) Describe the operational principles of smoothing and sharpening filters and their respective applications.	8
	b) Enumerate the various image enhancement methods in the spatial domain.	6
	OR	

14. a) Describe the concept of sharpening filters based on first and second derivatives in image 8 enhancement.

331B3

Duration:3 Hours

7

	b) Explain the significance of the Sobel filter in image enhancement. MODULE III	6					
15.	a) Differentiate between basic global thresholding and basic adaptive thresholding used for partitioning images.	6					
	b) Describe the different morphological operations used in digital image processing.	8					
	OR						
16.	a) Interpret the Canny edge detection algorithm.b) Explain how smoothing techniques are utilized to mitigate aliasing challenges in image enhancement.	9 5					
	MODULE IV						
17.	Illustrate the operation of mean-shift and graph-cut method in image processing. OR	14					
18.	Analyze the principles of region-based segmentation techniques such as region growing, region splitting and split and merge with examples in the context of image processing. MODULE V	14					
19.	a) Define supervised, unsupervised and semi-supervised learning. List the key differences between these three types of learning paradigms.b) Describe the K-nearest neighbors (KNN) algorithm.	9 5					
OR							
20.	Describe the operational principles and applications of K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN) models in the field of machine learning.	14					
